Spaces:
Sleeping
Sleeping
File size: 1,833 Bytes
b8a29bf d8682b4 b8a29bf fe85304 b8a29bf 411d6c8 b8a29bf d8682b4 b8a29bf fe85304 b8a29bf fe85304 b8a29bf fe85304 b8a29bf |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 |
import gradio as gr
import azure.cognitiveservices.speech as speechsdk
def assess_pronunciation(audio_file):
# Configure Azure Speech Service
speech_key = "YourAzureSpeechServiceKey"
service_region = "YourServiceRegion"
speech_config = speechsdk.SpeechConfig(subscription=speech_key, region=service_region)
# Set up the audio configuration
audio_config = speechsdk.audio.AudioConfig(filename=audio_file)
# Create pronunciation assessment config
pronunciation_config = speechsdk.PronunciationAssessmentConfig(
reference_text="你好",
grading_system=speechsdk.PronunciationAssessmentGradingSystem.HundredMark,
granularity=speechsdk.PronunciationAssessmentGranularity.Phoneme
)
pronunciation_config.enable_prosody_assessment()
# Create the recognizer
recognizer = speechsdk.SpeechRecognizer(speech_config=speech_config, audio_config=audio_config)
pronunciation_config.apply_to(recognizer)
# Recognize speech and assess pronunciation
result = recognizer.recognize_once()
pronunciation_result = speechsdk.PronunciationAssessmentResult(result)
# Extract and format the results
accuracy_score = pronunciation_result.accuracy_score
fluency_score = pronunciation_result.fluency_score
completeness_score = pronunciation_result.completeness_score
prosody_score = pronunciation_result.prosody_score
return {
"Accuracy": accuracy_score,
"Fluency": fluency_score,
"Completeness": completeness_score,
"Prosody": prosody_score
}
# Create Gradio interface
interface = gr.Interface(
fn=assess_pronunciation,
inputs=gr.Audio(source="upload", type="filepath"),
outputs="json",
title="Chinese Pronunciation Checker"
)
if __name__ == "__main__":
interface.launch()
|