File size: 15,046 Bytes
b821413
c5ecbf5
7d4f47e
1ca4f47
b195470
0a59b92
 
c5ecbf5
b195470
c5ecbf5
 
0a59b92
1ca4f47
26dd92c
dc5e4a5
1ca4f47
 
 
b821413
b195470
1ca4f47
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b195470
0a59b92
 
c5ecbf5
1ca4f47
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c5ecbf5
0a59b92
c5ecbf5
0a59b92
 
c5ecbf5
 
 
 
 
 
 
1ca4f47
0a59b92
1ca4f47
0a59b92
c5ecbf5
1ca4f47
 
 
c5ecbf5
 
1ca4f47
 
 
c5ecbf5
 
1ca4f47
 
 
c5ecbf5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1ca4f47
 
b195470
 
c42a43b
 
 
0a59b92
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b195470
0a59b92
 
 
 
6db614d
 
 
 
0a59b92
6db614d
 
 
0a59b92
 
 
 
 
 
1ca4f47
 
 
0a59b92
1ca4f47
0a59b92
1ca4f47
0a59b92
 
1ca4f47
247daa1
1ca4f47
e7da371
 
 
 
 
 
1ca4f47
0a59b92
 
e7da371
0a59b92
 
1ca4f47
0a59b92
 
1ca4f47
b195470
 
e7da371
 
 
 
 
 
 
 
 
 
 
 
b195470
1ca4f47
b195470
1ca4f47
0a59b92
b195470
1ca4f47
 
 
b195470
 
1ca4f47
b195470
1ca4f47
b195470
 
 
1ca4f47
b195470
1ca4f47
b195470
 
0a59b92
1ca4f47
 
 
0a59b92
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b195470
1ca4f47
0a59b92
1ca4f47
0a59b92
 
1ca4f47
 
 
 
0a59b92
 
1ca4f47
0a59b92
1ca4f47
 
 
 
 
 
 
 
0a59b92
 
 
1ca4f47
0a59b92
1ca4f47
0a59b92
 
1ca4f47
 
 
 
 
 
 
 
 
 
0a59b92
1ca4f47
0a59b92
1ca4f47
0a59b92
 
1ca4f47
 
 
 
 
 
 
 
 
 
0a59b92
1ca4f47
0a59b92
1ca4f47
 
0a59b92
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
import os
import torch
import spaces
import psycopg2
import gradio as gr
from threading import Thread
from collections.abc import Iterator
from transformers import AutoModelForCausalLM, AutoTokenizer, TextIteratorStreamer

MAX_MAX_NEW_TOKENS = 4096
MAX_INPUT_TOKEN_LENGTH = 4096
DEFAULT_MAX_NEW_TOKENS = 2048
HF_TOKEN = os.environ["HF_TOKEN"]

model_id = "ai4bharat/IndicTrans3-beta"
model = AutoModelForCausalLM.from_pretrained(
    model_id, torch_dtype=torch.float16, device_map="auto", token=HF_TOKEN
)
tokenizer = AutoTokenizer.from_pretrained("meta-llama/Llama-3.2-3B-Instruct")


LANGUAGES = [
    "Hindi",
    "Bengali",
    "Telugu",
    "Marathi",
    "Tamil",
    "Urdu",
    "Gujarati",
    "Kannada",
    "Odia",
    "Malayalam",
    "Punjabi",
    "Assamese",
    "Maithili",
    "Santali",
    "Kashmiri",
    "Nepali",
    "Sindhi",
    "Konkani",
    "Dogri",
    "Manipuri",
    "Bodo",
]


def format_message_for_translation(message, target_lang):
    return f"Translate the following text to {target_lang}: {message}"


def store_feedback(rating, feedback_text, chat_history, tgt_lang):
    try:

        if not rating:
            gr.Warning("Please select a rating before submitting feedback.", duration=5)
            return None

        if not feedback_text or feedback_text.strip() == "":
            gr.Warning("Please provide some feedback before submitting.", duration=5)
            return None

        if not chat_history:
            gr.Warning(
                "Please provide the input text before submitting feedback.", duration=5
            )
            return None

        if len(chat_history[0]) < 2:
            gr.Warning(
                "Please translate the input text before submitting feedback.",
                duration=5,
            )
            return None

        conn = psycopg2.connect(
            host=os.getenv("DB_HOST"),
            database=os.getenv("DB_NAME"),
            user=os.getenv("DB_USER"),
            password=os.getenv("DB_PASSWORD"),
            port=os.getenv("DB_PORT"),
        )

        cursor = conn.cursor()

        insert_query = """
        INSERT INTO feedback 
        (tgt_lang, rating, feedback_txt, chat_history)
        VALUES (%s, %s, %s, %s)
        """

        cursor.execute(
            insert_query, (tgt_lang, int(rating), feedback_text, chat_history)
        )

        conn.commit()

        cursor.close()
        conn.close()

        gr.Info("Thank you for your feedback! 🙏", duration=5)

    except:
        gr.Error(
            "An error occurred while storing feedback. Please try again later.",
            duration=5,
        )


def store_output(tgt_lang, input_text, output_text):

    conn = psycopg2.connect(
        host=os.getenv("DB_HOST"),
        database=os.getenv("DB_NAME"),
        user=os.getenv("DB_USER"),
        password=os.getenv("DB_PASSWORD"),
        port=os.getenv("DB_PORT"),
    )

    cursor = conn.cursor()

    insert_query = """
    INSERT INTO translation
    (input_txt, output_txt, tgt_lang)
    VALUES (%s, %s, %s)
    """

    cursor.execute(insert_query, (input_text, output_text, tgt_lang))

    conn.commit()
    cursor.close()


@spaces.GPU
def translate_message(
    message: str,
    chat_history: list[dict],
    target_language: str = "Hindi",
    max_new_tokens: int = 1024,
    temperature: float = 0.6,
    top_p: float = 0.9,
    top_k: int = 50,
    repetition_penalty: float = 1.2,
) -> Iterator[str]:
    conversation = []

    translation_request = format_message_for_translation(message, target_language)

    conversation.append({"role": "user", "content": translation_request})

    input_ids = tokenizer.apply_chat_template(
        conversation, return_tensors="pt", add_generation_prompt=True
    )
    if input_ids.shape[1] > MAX_INPUT_TOKEN_LENGTH:
        input_ids = input_ids[:, -MAX_INPUT_TOKEN_LENGTH:]
        gr.Warning(
            f"Trimmed input as it was longer than {MAX_INPUT_TOKEN_LENGTH} tokens."
        )
    input_ids = input_ids.to(model.device)

    streamer = TextIteratorStreamer(
        tokenizer, timeout=240.0, skip_prompt=True, skip_special_tokens=True
    )
    generate_kwargs = dict(
        {"input_ids": input_ids},
        streamer=streamer,
        max_new_tokens=max_new_tokens,
        do_sample=True,
        top_p=top_p,
        top_k=top_k,
        temperature=temperature,
        num_beams=1,
        repetition_penalty=repetition_penalty,
    )
    t = Thread(target=model.generate, kwargs=generate_kwargs)
    t.start()

    outputs = []
    for text in streamer:
        outputs.append(text)
        yield "".join(outputs)

    store_output(target_language, message, "".join(outputs))


css = """
# body {
#     background-color: #f7f7f7;
# }
.feedback-section {
    margin-top: 30px;
    border-top: 1px solid #ddd;
    padding-top: 20px;
}
.container {
    max-width: 90%;
    margin: 0 auto;
}
.language-selector {
    margin-bottom: 20px;
    padding: 10px;
    background-color: #ffffff;
    border-radius: 8px;
    box-shadow: 0 2px 5px rgba(0,0,0,0.1);
}
.advanced-options {
    margin-top: 20px;
}
"""

DESCRIPTION = """\
IndicTrans3 is the latest state-of-the-art (SOTA) translation model from AI4Bharat, designed to handle translations across <b>22 Indic languages</b> with high accuracy. It supports <b>document-level machine translation (MT)</b> and is built to match the performance of other leading SOTA models. <br>
📢 <b>Training data will be released soon!</b>  
<h3>🔹 Features</h3>  
✅ Supports <b>22 Indic languages</b><br>  
✅ Enables <b>document-level translation</b><br>  
✅ Achieves <b>SOTA performance</b> in Indic MT<br>  
✅ Optimized for <b>real-world applications</b><br>  
<h3>🚀 Try It Out!</h3>  
1️⃣ Enter text in any supported language<br>  
2️⃣ Select the target language<br>  
3️⃣ Click <b>Translate</b> and get high-quality results!<br>  
Built for <b>linguistic diversity and accessibility</b>, IndicTrans3 is a major step forward in <b>Indic language AI</b>.  
💡 <b>Source:</b> AI4Bharat | Powered by Hugging Face  
"""

with gr.Blocks(css=css) as demo:
    with gr.Column(elem_classes="container"):
        gr.Markdown(
            "# 🌏 IndicTrans3-beta 🚀: Multilingual Translation for 22 Indic Languages </center>"
        )
        gr.Markdown(DESCRIPTION)

        target_language = gr.Dropdown(
            LANGUAGES,
            value="Hindi",
            label="Which language would you like to translate to?",
            elem_id="language-dropdown",
        )

        chatbot = gr.Chatbot(
            height=400, 
            elem_id="chatbot", 
            show_copy_button=True,
            avatar_images=["avatars/user_logo.png", "avatars/ai4bharat_logo.png"]
            )

        with gr.Row():
            msg = gr.Textbox(
                placeholder="Enter a long paragraph to translate...",
                show_label=False,
                container=False,
                scale=9,
            )
            submit_btn = gr.Button("Translate", scale=1)

        gr.Examples(
            examples=[
                "The Taj Mahal, an architectural marvel of white marble, stands majestically along the banks of the Yamuna River in Agra, India. Built by Mughal Emperor Shah Jahan in memory of his beloved wife, Mumtaz Mahal, it symbolizes eternal love and devotion. The monument, a UNESCO World Heritage site, attracts millions of visitors each year, who admire its intricate carvings, calligraphy, and symmetrical gardens. At sunrise and sunset, the marble dome glows in hues of pink and golden, creating a breathtaking spectacle. The Taj Mahal is not only a masterpiece of Mughal architecture but also a timeless representation of romance and artistry.",
                "Kumbh Mela, the world’s largest spiritual gathering, is a significant Hindu festival held at four sacred riverbanks—Prayagraj, Haridwar, Nashik, and Ujjain—at intervals of 12 years. Millions of devotees, including sadhus, ascetics, and pilgrims, gather to take a holy dip in the river, believing it washes away sins and grants salvation. The festival is marked by grand processions, religious discourses, and vibrant cultural events. With its rich traditions, ancient rituals, and immense scale, Kumbh Mela is not just a religious event but also a profound representation of India’s spiritual and cultural heritage, fostering faith and unity among millions worldwide.",
                "India's classical dance forms, such as Bharatanatyam, Kathak, Odissi, Kuchipudi, and Kathakali, are deeply rooted in tradition and storytelling. These dance styles blend intricate footwork, graceful hand gestures, and expressive facial expressions to narrate mythological tales and historical legends. Bharatanatyam, originating from Tamil Nadu, is known for its rhythmic precision, while Kathak, from North India, features rapid spins and foot-tapping movements. Odissi, from Odisha, showcases fluid postures inspired by temple sculptures. Each form carries a distinct cultural essence, preserving centuries-old traditions while continuing to evolve in contemporary performances, keeping India’s rich artistic heritage alive and thriving.",
                "Ayurveda, India’s ancient medical system, emphasizes a holistic approach to health by balancing the mind, body, and spirit. Rooted in nature, it promotes well-being through herbal medicines, dietary guidelines, yoga, and meditation. Ayurveda classifies individuals based on three doshas—Vata, Pitta, and Kapha—determining their physical and mental constitution. Remedies include plant-based treatments, detox therapies, and rejuvenation practices to prevent and heal ailments. Unlike modern medicine, Ayurveda focuses on personalized healing and long-term wellness. With growing global interest in alternative medicine, Ayurveda continues to gain recognition for its effectiveness in promoting natural healing and overall health optimization.",
                "Diwali, the festival of lights, is one of India’s most celebrated festivals, symbolizing the victory of light over darkness and good over evil. Families clean and decorate their homes with colorful rangoli, oil lamps, and twinkling fairy lights. The festival marks the return of Lord Rama to Ayodhya after defeating Ravana, and it also honors Goddess Lakshmi, the deity of wealth and prosperity. Fireworks illuminate the night sky, while families exchange sweets and gifts, spreading joy and togetherness. Beyond its religious significance, Diwali fosters unity, strengthens relationships, and brings communities together in a spirit of happiness and renewal.",
            ],
            example_labels=[
                "The Taj Mahal, an architectural marvel of white marble, stands majestically along the banks of the Yamuna River in Agra...",
                "Kumbh Mela, the world’s largest spiritual gathering, is a significant Hindu festival held at four sacred riverbanks...",
                "India's classical dance forms, such as Bharatanatyam, Kathak, Odissi, Kuchipudi, and Kathakali, are deeply rooted in tradition...",
                "Ayurveda, India’s ancient medical system, emphasizes a holistic approach to health by balancing the mind, body, and spirit...",
                "Diwali, the festival of lights, is one of India’s most celebrated festivals, symbolizing the victory of light over darkness...",
            ],
            inputs=msg,
        )

        with gr.Accordion("Provide Feedback", open=True):
            gr.Markdown("## Rate Translation & Provide Feedback 📝")
            gr.Markdown(
                "Help us improve the translation quality by providing your feedback."
            )
            with gr.Row():
                rating = gr.Radio(
                    ["1", "2", "3", "4", "5"], label="Translation Rating (1-5)"
                )

            feedback_text = gr.Textbox(
                placeholder="Share your feedback about the translation...",
                label="Feedback",
                lines=3,
            )

            feedback_submit = gr.Button("Submit Feedback")
            feedback_result = gr.Textbox(label="", visible=False)

        with gr.Accordion(
            "Advanced Options", open=False, elem_classes="advanced-options"
        ):
            max_new_tokens = gr.Slider(
                label="Max new tokens",
                minimum=1,
                maximum=MAX_MAX_NEW_TOKENS,
                step=1,
                value=DEFAULT_MAX_NEW_TOKENS,
            )
            temperature = gr.Slider(
                label="Temperature",
                minimum=0.1,
                maximum=1.0,
                step=0.1,
                value=0.1,
            )
            top_p = gr.Slider(
                label="Top-p (nucleus sampling)",
                minimum=0.05,
                maximum=1.0,
                step=0.05,
                value=0.9,
            )
            top_k = gr.Slider(
                label="Top-k",
                minimum=1,
                maximum=100,
                step=1,
                value=50,
            )
            repetition_penalty = gr.Slider(
                label="Repetition penalty",
                minimum=1.0,
                maximum=2.0,
                step=0.05,
                value=1.0,
            )

        chat_state = gr.State([])

        def user(user_message, history, target_lang):
            return "", history + [[user_message, None]]

        def bot(
            history, target_lang, max_tokens, temp, top_p_val, top_k_val, rep_penalty
        ):
            user_message = history[-1][0]
            history[-1][1] = ""

            for chunk in translate_message(
                user_message,
                history[:-1],
                target_lang,
                max_tokens,
                temp,
                top_p_val,
                top_k_val,
                rep_penalty,
            ):
                history[-1][1] = chunk
                yield history

        msg.submit(
            user, [msg, chatbot, target_language], [msg, chatbot], queue=False
        ).then(
            bot,
            [
                chatbot,
                target_language,
                max_new_tokens,
                temperature,
                top_p,
                top_k,
                repetition_penalty,
            ],
            chatbot,
        )

        submit_btn.click(
            user, [msg, chatbot, target_language], [msg, chatbot], queue=False
        ).then(
            bot,
            [
                chatbot,
                target_language,
                max_new_tokens,
                temperature,
                top_p,
                top_k,
                repetition_penalty,
            ],
            chatbot,
        )

        feedback_submit.click(
            fn=store_feedback,
            inputs=[rating, feedback_text, chatbot, target_language],
        )
if __name__ == "__main__":
    demo.launch()