import datasets import polars as pl from loguru import logger from polars import datatypes as pdt BASE_REPO_ID = "ai-conferences/ICLR2025" PATCH_REPO_ID = "ai-conferences/ICLR2025-patches" PAPER_PAGE_REPO_ID = "hysts-bot-data/paper-pages-slim" def get_patch_latest_values( df: pl.DataFrame, all_columns: list[str], id_col: str, timestamp_col: str = "timestamp", delimiter: str = "," ) -> pl.DataFrame: df = df.sort(timestamp_col) list_cols = [ col for col, dtype in df.schema.items() if col not in (id_col, timestamp_col) and dtype.base_type() is pdt.List ] df = df.with_columns( [ pl.when(pl.col(c).is_not_null()).then(pl.col(c).list.join(delimiter)).otherwise(None).alias(c) for c in list_cols ] ) update_columns = [col for col in df.columns if col not in (id_col, timestamp_col)] melted = df.unpivot(on=update_columns, index=[timestamp_col, id_col]).drop_nulls() latest_rows = ( melted.sort(timestamp_col) .group_by([id_col, "variable"]) .agg(pl.col("value").last()) .pivot("variable", index=id_col, values="value") ) latest_rows = latest_rows.with_columns( [ pl.when(pl.col(c).is_not_null()).then(pl.col(c).str.split(delimiter)).otherwise(None).alias(c) for c in list_cols ] ) missing_cols = [c for c in all_columns if c not in latest_rows.columns and c != id_col] if missing_cols: latest_rows = latest_rows.with_columns([pl.lit(None).alias(c) for c in missing_cols]) return latest_rows.select([id_col] + [col for col in all_columns if col != id_col]) def format_author_claim_ratio(row: dict) -> str: n_linked_authors = row["n_linked_authors"] n_authors = row["n_authors"] if n_linked_authors is None or n_authors is None: return "" author_linked = "✅" if n_linked_authors > 0 else "" return f"{n_linked_authors}/{n_authors} {author_linked}".strip() df_orig = ( datasets.load_dataset(BASE_REPO_ID, split="train") .to_polars() .rename({"paper_url": "openreview", "submission_number": "paper_id"}) .with_columns( pl.lit([], dtype=pl.List(pl.Utf8)).alias(col_name) for col_name in ["space_ids", "model_ids", "dataset_ids"] ) ) df_paper_page = ( datasets.load_dataset(PAPER_PAGE_REPO_ID, split="train") .to_polars() .drop(["summary", "author_names", "ai_keywords"]) ) df_orig = df_orig.join(df_paper_page, on="arxiv_id", how="left") try: df_patches = ( datasets.load_dataset(PATCH_REPO_ID, split="train") .to_polars() .drop("diff") .with_columns(pl.col("timestamp").str.strptime(pl.Datetime, "%+")) ) df_patches = get_patch_latest_values(df_patches, df_orig.columns, id_col="paper_id", timestamp_col="timestamp") df_orig = ( df_orig.join(df_patches, on="paper_id", how="left") .with_columns( [ pl.coalesce([pl.col(col + "_right"), pl.col(col)]).alias(col) for col in df_orig.columns if col != "paper_id" ] ) .select(df_orig.columns) ) except Exception as e: # noqa: BLE001 logger.warning(e) # format authors df_orig = df_orig.with_columns(pl.col("authors").list.join(", ").alias("authors_str")) # format links df_orig = df_orig.with_columns( [ pl.format("[link]({})", pl.col(col)).fill_null("").alias(f"{col}_md") for col in ["openreview", "project_page", "github"] ] ) # format paper page link df_orig = df_orig.with_columns( (pl.lit("https://huggingface.co./papers/") + pl.col("arxiv_id")).alias("paper_page") ).with_columns(pl.format("[{}]({})", pl.col("arxiv_id"), pl.col("paper_page")).fill_null("").alias("paper_page_md")) # count authors df_orig = df_orig.with_columns(pl.col("authors").list.len().alias("n_authors")) df_orig = df_orig.with_columns( pl.col("author_usernames") .map_elements(lambda lst: sum(x is not None for x in lst) if lst is not None else None, return_dtype=pl.Int64) .alias("n_linked_authors") ) df_orig = df_orig.with_columns( pl.struct(["n_linked_authors", "n_authors"]) .map_elements(format_author_claim_ratio, return_dtype=pl.Utf8) .alias("claimed") ) # TODO: Fix this once https://github.com/gradio-app/gradio/issues/10916 is fixed # noqa: FIX002, TD002 # format numbers as strings df_orig = df_orig.with_columns( [pl.col(col).cast(pl.Utf8).fill_null("").alias(col) for col in ["upvotes", "num_comments"]] ) # format spaces, models, datasets for repo_id_col, markdown_col, base_url in [ ("space_ids", "Spaces", "https://huggingface.co./spaces/"), ("model_ids", "Models", "https://huggingface.co./"), ("dataset_ids", "Datasets", "https://huggingface.co./datasets/"), ]: df_orig = df_orig.with_columns( pl.col(repo_id_col) .map_elements( lambda lst: "\n".join([f"[link]({base_url}{x})" for x in lst]) if lst is not None else None, # noqa: B023 return_dtype=pl.Utf8, ) .fill_null("") .alias(markdown_col) )