Spaces:
Running
on
Zero
Running
on
Zero
File size: 8,108 Bytes
d06d36f 475df0d d06d36f f69892b d06d36f 475df0d f69892b d06d36f 38eb481 d06d36f f69892b d06d36f f69892b 52de44b 0e03ced f69892b d06d36f f69892b 475df0d d06d36f f69892b 52de44b d06d36f f69892b 52de44b f69892b 52de44b f69892b d06d36f 475df0d d06d36f f69892b 475df0d d06d36f f69892b d06d36f f69892b d06d36f |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 |
#!/usr/bin/env python
import gradio as gr
import polars as pl
from gradio_modal import Modal
from app_pr import demo as demo_pr
from semantic_search import semantic_search
from table import df_orig
DESCRIPTION = "# ICLR 2025"
TUTORIAL = """\
#### Claiming Authorship for Papers on arXiv
If your ICLR 2025 paper is available on arXiv and listed in the table below, you can claim authorship by following these steps:
1. Find your paper in the table.
2. Click the link to the paper page in the table.
3. On that page, click your name.
4. Click **"Claim authorship"**.
- You'll be redirected to the *Papers* section of your Settings.
5. Confirm the request on the redirected page.
The admin team will review your request shortly.
Once confirmed, your paper page will be marked as verified, and you'll be able to add a project page and a GitHub repository.
If you need further help, check out the [guide here](https://huggingface.co./docs/hub/paper-pages).
#### Updating Missing or Incorrect Information in the Table
If you notice any missing or incorrect information in the table, feel free to submit a PR via the "Open PR" page, which you can find at the top right of this page.
"""
# TODO: remove this once https://github.com/gradio-app/gradio/issues/10916 https://github.com/gradio-app/gradio/issues/11001 https://github.com/gradio-app/gradio/issues/11002 are fixed # noqa: TD002, FIX002
NOTE = """\
Note: Sorting by upvotes or comments may not work correctly due to a known bug in Gradio.
"""
df_main = df_orig.select(
"title",
"authors_str",
"openreview_md",
"type",
"paper_page_md",
"upvotes",
"num_comments",
"project_page_md",
"github_md",
"Spaces",
"Models",
"Datasets",
"claimed",
"abstract",
"paper_id",
)
df_main = df_main.rename(
{
"title": "Title",
"authors_str": "Authors",
"openreview_md": "OpenReview",
"type": "Type",
"paper_page_md": "Paper page",
"upvotes": "👍",
"num_comments": "💬",
"project_page_md": "Project page",
"github_md": "GitHub",
}
)
COLUMN_INFO = {
"Title": ("str", "40%"),
"Authors": ("str", "20%"),
"Type": ("str", None),
"Paper page": ("markdown", "135px"),
"👍": ("number", "50px"),
"💬": ("number", "50px"),
"OpenReview": ("markdown", None),
"Project page": ("markdown", None),
"GitHub": ("markdown", None),
"Spaces": ("markdown", None),
"Models": ("markdown", None),
"Datasets": ("markdown", None),
"claimed": ("markdown", None),
}
DEFAULT_COLUMNS = [
"Title",
"Type",
"Paper page",
"👍",
"💬",
"OpenReview",
"Project page",
"GitHub",
"Spaces",
"Models",
"Datasets",
]
def update_num_papers(df: pl.DataFrame) -> str:
if "claimed" in df.columns:
return f"{len(df)} / {len(df_main)} ({df.select(pl.col('claimed').str.contains('✅').sum()).item()} claimed)"
return f"{len(df)} / {len(df_main)}"
def update_df(
search_mode: str,
search_query: str,
candidate_pool_size: int,
score_threshold: float,
presentation_type: str,
column_names: list[str],
case_insensitive: bool = True,
) -> gr.Dataframe:
df = df_main.clone()
column_names = ["Title", *column_names]
if search_query:
if search_mode == "Title Search":
if case_insensitive:
search_query = f"(?i){search_query}"
try:
df = df.filter(pl.col("Title").str.contains(search_query))
except pl.exceptions.ComputeError as e:
raise gr.Error(str(e)) from e
else:
paper_ids, scores = semantic_search(search_query, candidate_pool_size, score_threshold)
if not paper_ids:
df = df.head(0)
else:
df = pl.DataFrame({"paper_id": paper_ids, "score": scores}).join(df, on="paper_id", how="inner")
df = df.sort("score", descending=True).drop("score")
if presentation_type != "(ALL)":
df = df.filter(pl.col("Type").str.contains(presentation_type))
sorted_column_names = [col for col in COLUMN_INFO if col in column_names]
df = df.select(sorted_column_names)
return gr.Dataframe(
value=df,
datatype=[COLUMN_INFO[col][0] for col in sorted_column_names],
column_widths=[COLUMN_INFO[col][1] for col in sorted_column_names],
)
def update_search_mode(search_mode: str) -> gr.Accordion:
return gr.Accordion(visible=search_mode == "Semantic Search")
def df_row_selected(
evt: gr.SelectData,
) -> tuple[
Modal,
gr.Textbox, # title
gr.Textbox, # abstract
]:
if evt.index[1] != 0:
return Modal(), gr.Textbox(), gr.Textbox()
title = evt.row_value[0]
row = df_main.filter(pl.col("Title") == title)
return (
Modal(visible=True),
gr.Textbox(value=row["Title"].item()), # title
gr.Textbox(value=row["abstract"].item()), # abstract
)
with gr.Blocks(css_paths="style.css") as demo:
gr.Markdown(DESCRIPTION)
with gr.Accordion(label="Tutorial", open=True):
gr.Markdown(TUTORIAL)
with gr.Group():
search_mode = gr.Radio(
label="Search Mode",
choices=["Semantic Search", "Title Search"],
value="Semantic Search",
show_label=False,
info="Note: Semantic search consumes your ZeroGPU quota.",
)
search_query = gr.Textbox(label="Search", submit_btn=True, show_label=False, placeholder="Enter query here")
with gr.Accordion(label="Advanced Search Options", open=False) as advanced_search_options:
with gr.Row():
candidate_pool_size = gr.Slider(
label="Candidate Pool Size", minimum=1, maximum=1000, step=1, value=300
)
score_threshold = gr.Slider(label="Score Threshold", minimum=0, maximum=1, step=0.01, value=0.5)
presentation_type = gr.Radio(
label="Presentation Type",
choices=["(ALL)", "Oral", "Spotlight", "Poster"],
value="(ALL)",
)
column_names = gr.CheckboxGroup(
label="Columns",
choices=[col for col in COLUMN_INFO if col != "Title"],
value=[col for col in DEFAULT_COLUMNS if col != "Title"],
)
num_papers = gr.Textbox(label="Number of papers", value=update_num_papers(df_orig), interactive=False)
gr.Markdown(NOTE)
df = gr.Dataframe(
value=df_main,
datatype=list(COLUMN_INFO.values()),
type="polars",
row_count=(0, "dynamic"),
show_row_numbers=True,
interactive=False,
max_height=1000,
elem_id="table",
column_widths=[COLUMN_INFO[col][1] for col in COLUMN_INFO],
)
with Modal(visible=False, elem_id="abstract-modal") as abstract_modal:
title = gr.Textbox(label="Title")
abstract = gr.Textbox(label="Abstract")
search_mode.change(
fn=update_search_mode,
inputs=search_mode,
outputs=advanced_search_options,
)
df.select(fn=df_row_selected, outputs=[abstract_modal, title, abstract])
inputs = [
search_mode,
search_query,
candidate_pool_size,
score_threshold,
presentation_type,
column_names,
]
gr.on(
triggers=[
search_query.submit,
presentation_type.input,
column_names.input,
],
fn=update_df,
inputs=inputs,
outputs=df,
api_name=False,
).then(
fn=update_num_papers,
inputs=df,
outputs=num_papers,
queue=False,
api_name=False,
)
demo.load(
fn=update_df,
inputs=inputs,
outputs=df,
api_name=False,
).then(
fn=update_num_papers,
inputs=df,
outputs=num_papers,
queue=False,
api_name=False,
)
with demo.route("Open PR"):
demo_pr.render()
if __name__ == "__main__":
demo.queue(api_open=False).launch(show_api=False)
|