davidberenstein1957 commited on
Commit
ead3116
·
verified ·
1 Parent(s): 5b1fa82

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +8 -6
app.py CHANGED
@@ -7,27 +7,29 @@ reranker = CrossEncoder("sentence-transformers/all-MiniLM-L12-v2")
7
 
8
  def rerank_documents(query: str, documents: pd.DataFrame) -> pd.DataFrame:
9
  documents = documents.copy()
10
- documents = documents.drop_duplicates("chunk")
11
- documents["rank"] = reranker.predict([[query, hit] for hit in documents["chunk"]])
12
  documents = documents.sort_values(by="rank", ascending=False)
13
  return documents
14
 
15
 
16
  with gr.Blocks() as demo:
17
- gr.Markdown("""# RAG - rerank
18
 
19
- Part of [smol blueprint](https://github.com/davidberenstein1957/smol-blueprint) - a smol blueprint for AI development, focusing on practical examples of RAG, information extraction, analysis and fine-tuning in the age of LLMs.""")
 
 
20
 
21
  query_input = gr.Textbox(
22
  label="Query", placeholder="Enter your question here...", lines=3
23
  )
24
  documents_input = gr.Dataframe(
25
- label="Documents", headers=["chunk"], wrap=True, interactive=True
26
  )
27
 
28
  submit_btn = gr.Button("Submit")
29
  documents_output = gr.Dataframe(
30
- label="Documents", headers=["chunk", "rank"], wrap=True
31
  )
32
 
33
  submit_btn.click(
 
7
 
8
  def rerank_documents(query: str, documents: pd.DataFrame) -> pd.DataFrame:
9
  documents = documents.copy()
10
+ documents = documents.drop_duplicates("text")
11
+ documents["rank"] = reranker.predict([[query, hit] for hit in documents["text"]])
12
  documents = documents.sort_values(by="rank", ascending=False)
13
  return documents
14
 
15
 
16
  with gr.Blocks() as demo:
17
+ gr.Markdown("""# RAG - Augment
18
 
19
+ Applies reranking to the retrieved documents using [sentence-transformers/all-MiniLM-L12-v2](https://huggingface.co/sentence-transformers/all-MiniLM-L12-v2).
20
+
21
+ Part of [AI blueprint](https://github.com/huggingface/ai-blueprint) - a blueprint for AI development, focusing on practical examples of RAG, information extraction, analysis and fine-tuning in the age of LLMs.""")
22
 
23
  query_input = gr.Textbox(
24
  label="Query", placeholder="Enter your question here...", lines=3
25
  )
26
  documents_input = gr.Dataframe(
27
+ label="Documents", headers=["text"], wrap=True, interactive=True
28
  )
29
 
30
  submit_btn = gr.Button("Submit")
31
  documents_output = gr.Dataframe(
32
+ label="Documents", headers=["text", "rank"], wrap=True
33
  )
34
 
35
  submit_btn.click(