Spaces:
Build error
Build error
File size: 24,265 Bytes
8abeb87 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 |
{
"cells": [
{
"cell_type": "markdown",
"metadata": {},
"source": [
"# TRANSFORMER MODELS"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Transformers, what can they do?"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Sentiment Analysis"
]
},
{
"cell_type": "code",
"execution_count": 1,
"metadata": {},
"outputs": [
{
"name": "stderr",
"output_type": "stream",
"text": [
"No model was supplied, defaulted to distilbert/distilbert-base-uncased-finetuned-sst-2-english and revision 714eb0f (https://huggingface.co./distilbert/distilbert-base-uncased-finetuned-sst-2-english).\n",
"Using a pipeline without specifying a model name and revision in production is not recommended.\n"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"WARNING:tensorflow:From c:\\Users\\ACER\\AppData\\Local\\Programs\\Python\\Python312\\Lib\\site-packages\\tf_keras\\src\\losses.py:2976: The name tf.losses.sparse_softmax_cross_entropy is deprecated. Please use tf.compat.v1.losses.sparse_softmax_cross_entropy instead.\n",
"\n"
]
},
{
"data": {
"text/plain": [
"[{'label': 'POSITIVE', 'score': 0.9598049521446228}]"
]
},
"execution_count": 1,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"from transformers import pipeline\n",
"\n",
"classifier = pipeline(\"sentiment-analysis\")\n",
"classifier(\"I've been waiting for a HuggingFace course my whole life.\")"
]
},
{
"cell_type": "code",
"execution_count": 2,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"[{'label': 'POSITIVE', 'score': 0.9598049521446228},\n",
" {'label': 'NEGATIVE', 'score': 0.9994558691978455}]"
]
},
"execution_count": 2,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"# we can pass several sentences\n",
"classifier(\n",
" [\"I've been waiting for a HuggingFace course my whole life.\", \"I hate this so much!\"]\n",
")"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Zero-shot classification"
]
},
{
"cell_type": "code",
"execution_count": 3,
"metadata": {},
"outputs": [
{
"name": "stderr",
"output_type": "stream",
"text": [
"No model was supplied, defaulted to facebook/bart-large-mnli and revision d7645e1 (https://huggingface.co./facebook/bart-large-mnli).\n",
"Using a pipeline without specifying a model name and revision in production is not recommended.\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "13af57499d894e8aa77c7ed39138d3dd",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
"model.safetensors: 98%|#########8| 1.60G/1.63G [00:00<?, ?B/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"c:\\Users\\ACER\\AppData\\Local\\Programs\\Python\\Python312\\Lib\\site-packages\\huggingface_hub\\file_download.py:147: UserWarning: `huggingface_hub` cache-system uses symlinks by default to efficiently store duplicated files but your machine does not support them in C:\\Users\\ACER\\.cache\\huggingface\\hub\\models--facebook--bart-large-mnli. Caching files will still work but in a degraded version that might require more space on your disk. This warning can be disabled by setting the `HF_HUB_DISABLE_SYMLINKS_WARNING` environment variable. For more details, see https://huggingface.co./docs/huggingface_hub/how-to-cache#limitations.\n",
"To support symlinks on Windows, you either need to activate Developer Mode or to run Python as an administrator. In order to activate developer mode, see this article: https://docs.microsoft.com/en-us/windows/apps/get-started/enable-your-device-for-development\n",
" warnings.warn(message)\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "5184b998013d4eacac2a0e943ebcbfdf",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
"tokenizer_config.json: 0%| | 0.00/26.0 [00:00<?, ?B/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "af001870e23b4808862f0f4e160327ef",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
"vocab.json: 0%| | 0.00/899k [00:00<?, ?B/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "743eb773e873441c813a1d13925215cf",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
"merges.txt: 0%| | 0.00/456k [00:00<?, ?B/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "f29eb797c99242558fe742a00411262c",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
"tokenizer.json: 0%| | 0.00/1.36M [00:00<?, ?B/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"text/plain": [
"{'sequence': 'This is a course about the Transformers library.',\n",
" 'labels': ['education', 'business', 'politics'],\n",
" 'scores': [0.8719874024391174, 0.09406554698944092, 0.033947039395570755]}"
]
},
"execution_count": 3,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"from transformers import pipeline\n",
"\n",
"classifier = pipeline(\"zero-shot-classification\")\n",
"\n",
"classifier(\n",
" \"This is a course about the Transformers library.\",\n",
" candidate_labels = [\"education\", \"politics\", \"business\"]\n",
")"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Text generation"
]
},
{
"cell_type": "code",
"execution_count": 4,
"metadata": {},
"outputs": [
{
"name": "stderr",
"output_type": "stream",
"text": [
"No model was supplied, defaulted to openai-community/gpt2 and revision 607a30d (https://huggingface.co./openai-community/gpt2).\n",
"Using a pipeline without specifying a model name and revision in production is not recommended.\n",
"Setting `pad_token_id` to `eos_token_id`:None for open-end generation.\n"
]
},
{
"data": {
"text/plain": [
"[{'generated_text': 'In this course, we will teach you how to build a custom script and a WebScript web server that uses the JQuery 4.3 framework.\\n\\nYou will run up to 60 minutes with a single setup, in our example JQuery J'}]"
]
},
"execution_count": 4,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"from transformers import pipeline\n",
"\n",
"generator = pipeline(\"text-generation\")\n",
"generator(\"In this course, we will teach you how to\")"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Using any model from the Hub in a pipeline"
]
},
{
"cell_type": "code",
"execution_count": 5,
"metadata": {},
"outputs": [
{
"name": "stderr",
"output_type": "stream",
"text": [
"Truncation was not explicitly activated but `max_length` is provided a specific value, please use `truncation=True` to explicitly truncate examples to max length. Defaulting to 'longest_first' truncation strategy. If you encode pairs of sequences (GLUE-style) with the tokenizer you can select this strategy more precisely by providing a specific strategy to `truncation`.\n",
"Setting `pad_token_id` to `eos_token_id`:None for open-end generation.\n"
]
},
{
"data": {
"text/plain": [
"[{'generated_text': 'In this course, we will teach you how to implement an API that can only be used by a single user.\\n\\n\\nHere are the slides'},\n",
" {'generated_text': 'In this course, we will teach you how to put food in order to reduce the risk of heart disease and even kill yourself as part of a program'}]"
]
},
"execution_count": 5,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"from transformers import pipeline\n",
"\n",
"generator = pipeline(\"text-generation\", model=\"distilgpt2\")\n",
"\n",
"generator(\n",
" \"In this course, we will teach you how to\",\n",
" max_length=30,\n",
" num_return_sequences=2)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Mask filling"
]
},
{
"cell_type": "code",
"execution_count": 6,
"metadata": {},
"outputs": [
{
"name": "stderr",
"output_type": "stream",
"text": [
"No model was supplied, defaulted to distilbert/distilroberta-base and revision fb53ab8 (https://huggingface.co./distilbert/distilroberta-base).\n",
"Using a pipeline without specifying a model name and revision in production is not recommended.\n",
"Some weights of the model checkpoint at distilbert/distilroberta-base were not used when initializing RobertaForMaskedLM: ['roberta.pooler.dense.bias', 'roberta.pooler.dense.weight']\n",
"- This IS expected if you are initializing RobertaForMaskedLM from the checkpoint of a model trained on another task or with another architecture (e.g. initializing a BertForSequenceClassification model from a BertForPreTraining model).\n",
"- This IS NOT expected if you are initializing RobertaForMaskedLM from the checkpoint of a model that you expect to be exactly identical (initializing a BertForSequenceClassification model from a BertForSequenceClassification model).\n"
]
},
{
"data": {
"text/plain": [
"[{'score': 0.19198469817638397,\n",
" 'token': 30412,\n",
" 'token_str': ' mathematical',\n",
" 'sequence': 'This course will teach you all about mathematical models.'},\n",
" {'score': 0.04209211468696594,\n",
" 'token': 38163,\n",
" 'token_str': ' computational',\n",
" 'sequence': 'This course will teach you all about computational models.'}]"
]
},
"execution_count": 6,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"from transformers import pipeline\n",
"\n",
"unmasker = pipeline(\"fill-mask\")\n",
"unmasker(\"This course will teach you all about <mask> models.\", top_k=2)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Named Entity Recognition"
]
},
{
"cell_type": "code",
"execution_count": 7,
"metadata": {},
"outputs": [
{
"name": "stderr",
"output_type": "stream",
"text": [
"No model was supplied, defaulted to dbmdz/bert-large-cased-finetuned-conll03-english and revision 4c53496 (https://huggingface.co./dbmdz/bert-large-cased-finetuned-conll03-english).\n",
"Using a pipeline without specifying a model name and revision in production is not recommended.\n",
"Some weights of the model checkpoint at dbmdz/bert-large-cased-finetuned-conll03-english were not used when initializing BertForTokenClassification: ['bert.pooler.dense.bias', 'bert.pooler.dense.weight']\n",
"- This IS expected if you are initializing BertForTokenClassification from the checkpoint of a model trained on another task or with another architecture (e.g. initializing a BertForSequenceClassification model from a BertForPreTraining model).\n",
"- This IS NOT expected if you are initializing BertForTokenClassification from the checkpoint of a model that you expect to be exactly identical (initializing a BertForSequenceClassification model from a BertForSequenceClassification model).\n",
"c:\\Users\\ACER\\AppData\\Local\\Programs\\Python\\Python312\\Lib\\site-packages\\transformers\\pipelines\\token_classification.py:170: UserWarning: `grouped_entities` is deprecated and will be removed in version v5.0.0, defaulted to `aggregation_strategy=\"AggregationStrategy.SIMPLE\"` instead.\n",
" warnings.warn(\n"
]
},
{
"data": {
"text/plain": [
"[{'entity_group': 'PER',\n",
" 'score': 0.99884915,\n",
" 'word': 'Ahmad',\n",
" 'start': 11,\n",
" 'end': 16},\n",
" {'entity_group': 'ORG',\n",
" 'score': 0.9950792,\n",
" 'word': 'University of Engineering and Technology',\n",
" 'start': 31,\n",
" 'end': 71},\n",
" {'entity_group': 'LOC',\n",
" 'score': 0.97850055,\n",
" 'word': 'Lahore',\n",
" 'start': 73,\n",
" 'end': 79},\n",
" {'entity_group': 'ORG',\n",
" 'score': 0.78072757,\n",
" 'word': \"Bechelor ' s\",\n",
" 'start': 95,\n",
" 'end': 105},\n",
" {'entity_group': 'ORG',\n",
" 'score': 0.92247367,\n",
" 'word': 'Computer Science',\n",
" 'start': 109,\n",
" 'end': 125}]"
]
},
"execution_count": 7,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"from transformers import pipeline\n",
"\n",
"ner = pipeline(\"ner\", grouped_entities=True)\n",
"ner(\"My name is Ahmad and I work at University of Engineering and Technology, Lahore. I was prsuing Bechelor's of Computer Science.\")"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Question answering"
]
},
{
"cell_type": "code",
"execution_count": 2,
"metadata": {},
"outputs": [
{
"name": "stderr",
"output_type": "stream",
"text": [
"No model was supplied, defaulted to distilbert/distilbert-base-cased-distilled-squad and revision 564e9b5 (https://huggingface.co./distilbert/distilbert-base-cased-distilled-squad).\n",
"Using a pipeline without specifying a model name and revision in production is not recommended.\n"
]
}
],
"source": [
"from transformers import pipeline\n",
"\n",
"question_answerer = pipeline(\"question-answering\")\n",
"\n",
"ans = question_answerer(\n",
" question=\"where do I work?\",\n",
" context = \"My name is Ahmad and I work at University of Engineering and Technology, Lahore\"\n",
")"
]
},
{
"cell_type": "code",
"execution_count": 4,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"'University of Engineering and Technology, Lahore'"
]
},
"execution_count": 4,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"ans['answer']"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Summarization"
]
},
{
"cell_type": "code",
"execution_count": 9,
"metadata": {},
"outputs": [
{
"name": "stderr",
"output_type": "stream",
"text": [
"No model was supplied, defaulted to sshleifer/distilbart-cnn-12-6 and revision a4f8f3e (https://huggingface.co./sshleifer/distilbart-cnn-12-6).\n",
"Using a pipeline without specifying a model name and revision in production is not recommended.\n"
]
}
],
"source": [
"from transformers import pipeline\n",
"\n",
"summarizer = pipeline(\"summarization\")\n",
"summary = summarizer(\n",
" \"\"\"\n",
" America has changed dramatically during recent years. Not only has the number of \n",
" graduates in traditional engineering disciplines such as mechanical, civil, \n",
" electrical, chemical, and aeronautical engineering declined, but in most of \n",
" the premier American universities engineering curricula now concentrate on \n",
" and encourage largely the study of engineering science. As a result, there \n",
" are declining offerings in engineering subjects dealing with infrastructure, \n",
" the environment, and related issues, and greater concentration on high \n",
" technology subjects, largely supporting increasingly complex scientific \n",
" developments. While the latter is important, it should not be at the expense \n",
" of more traditional engineering.\n",
"\n",
" Rapidly developing economies such as China and India, as well as other \n",
" industrial countries in Europe and Asia, continue to encourage and advance \n",
" the teaching of engineering. Both China and India, respectively, graduate \n",
" six and eight times as many traditional engineers as does the United States. \n",
" Other industrial countries at minimum maintain their output, while America \n",
" suffers an increasingly serious decline in the number of engineering graduates \n",
" and a lack of well-educated engineers.\n",
"\"\"\"\n",
")"
]
},
{
"cell_type": "code",
"execution_count": 10,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
" America has changed dramatically during recent years . The number of engineering graduates in the U.S. has declined in traditional engineering disciplines such as mechanical, civil, electrical, chemical, and aeronautical engineering . Rapidly developing economies such as China and India continue to encourage and advance the teaching of engineering .\n"
]
}
],
"source": [
"print(summary[0]['summary_text'])"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Translation"
]
},
{
"cell_type": "code",
"execution_count": 11,
"metadata": {},
"outputs": [],
"source": [
"import sentencepiece"
]
},
{
"cell_type": "code",
"execution_count": 12,
"metadata": {},
"outputs": [
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "e7521143fb794a39b66b0f5d00f9fac8",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
"source.spm: 0%| | 0.00/802k [00:00<?, ?B/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"c:\\Users\\ACER\\AppData\\Local\\Programs\\Python\\Python312\\Lib\\site-packages\\huggingface_hub\\file_download.py:147: UserWarning: `huggingface_hub` cache-system uses symlinks by default to efficiently store duplicated files but your machine does not support them in C:\\Users\\ACER\\.cache\\huggingface\\hub\\models--Helsinki-NLP--opus-mt-fr-en. Caching files will still work but in a degraded version that might require more space on your disk. This warning can be disabled by setting the `HF_HUB_DISABLE_SYMLINKS_WARNING` environment variable. For more details, see https://huggingface.co./docs/huggingface_hub/how-to-cache#limitations.\n",
"To support symlinks on Windows, you either need to activate Developer Mode or to run Python as an administrator. In order to activate developer mode, see this article: https://docs.microsoft.com/en-us/windows/apps/get-started/enable-your-device-for-development\n",
" warnings.warn(message)\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "d658b08296d64e4081ac272272b520d7",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
"target.spm: 0%| | 0.00/778k [00:00<?, ?B/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "92ea52e7b8d446e7a21d844815c4045b",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
"vocab.json: 0%| | 0.00/1.34M [00:00<?, ?B/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"c:\\Users\\ACER\\AppData\\Local\\Programs\\Python\\Python312\\Lib\\site-packages\\transformers\\models\\marian\\tokenization_marian.py:175: UserWarning: Recommended: pip install sacremoses.\n",
" warnings.warn(\"Recommended: pip install sacremoses.\")\n"
]
},
{
"data": {
"text/plain": [
"[{'translation_text': 'This course is produced by Hugging Face.'}]"
]
},
"execution_count": 12,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"import sentencepiece\n",
"from transformers import pipeline\n",
"\n",
"translator = pipeline(\"translation\", model=\"Helsinki-NLP/opus-mt-fr-en\")\n",
"translator(\"Ce cours est produit par Hugging Face.\")"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Bias and limitations"
]
},
{
"cell_type": "code",
"execution_count": 13,
"metadata": {},
"outputs": [
{
"name": "stderr",
"output_type": "stream",
"text": [
"BertForMaskedLM has generative capabilities, as `prepare_inputs_for_generation` is explicitly overwritten. However, it doesn't directly inherit from `GenerationMixin`. From πv4.50π onwards, `PreTrainedModel` will NOT inherit from `GenerationMixin`, and this model will lose the ability to call `generate` and other related functions.\n",
" - If you're using `trust_remote_code=True`, you can get rid of this warning by loading the model with an auto class. See https://huggingface.co./docs/transformers/en/model_doc/auto#auto-classes\n",
" - If you are the owner of the model architecture code, please modify your model class such that it inherits from `GenerationMixin` (after `PreTrainedModel`, otherwise you'll get an exception).\n",
" - If you are not the owner of the model architecture class, please contact the model code owner to update it.\n",
"Some weights of the model checkpoint at bert-base-uncased were not used when initializing BertForMaskedLM: ['bert.pooler.dense.bias', 'bert.pooler.dense.weight', 'cls.seq_relationship.bias', 'cls.seq_relationship.weight']\n",
"- This IS expected if you are initializing BertForMaskedLM from the checkpoint of a model trained on another task or with another architecture (e.g. initializing a BertForSequenceClassification model from a BertForPreTraining model).\n",
"- This IS NOT expected if you are initializing BertForMaskedLM from the checkpoint of a model that you expect to be exactly identical (initializing a BertForSequenceClassification model from a BertForSequenceClassification model).\n"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"['carpenter', 'lawyer', 'farmer', 'businessman', 'doctor']\n",
"['nurse', 'maid', 'teacher', 'waitress', 'prostitute']\n"
]
}
],
"source": [
"from transformers import pipeline\n",
"\n",
"unmasker = pipeline(\"fill-mask\", model=\"bert-base-uncased\")\n",
"result = unmasker(\"This man works as a [MASK].\")\n",
"print([r[\"token_str\"] for r in result])\n",
"\n",
"result = unmasker(\"This woman works as a [MASK].\")\n",
"print([r[\"token_str\"] for r in result])"
]
}
],
"metadata": {
"kernelspec": {
"display_name": "huggingface-nlp",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.10.16"
}
},
"nbformat": 4,
"nbformat_minor": 2
}
|