import os import gradio as gr # Keep using gradio.ChatMessage for type hints if needed, but not for yielding complex structures directly to ChatInterface # from gradio import ChatMessage # Maybe remove this import if not used elsewhere import requests from typing import Dict, List, AsyncGenerator, Union, Tuple from langchain_core.messages import HumanMessage, AIMessage, ToolMessage # Use LangChain messages internally from langchain_core.tools import tool from langchain_openai import ChatOpenAI from langgraph.checkpoint.memory import MemorySaver from langgraph.prebuilt import create_react_agent # --- Tools remain the same --- @tool def get_lat_lng(location_description: str) -> dict[str, float]: """Get the latitude and longitude of a location.""" print(f"Tool: Getting lat/lng for {location_description}") # Replace with actual API call in a real app if "tokyo" in location_description.lower(): return {"lat": 35.6895, "lng": 139.6917} elif "paris" in location_description.lower(): return {"lat": 48.8566, "lng": 2.3522} elif "new york" in location_description.lower(): return {"lat": 40.7128, "lng": -74.0060} else: return {"lat": 51.5072, "lng": -0.1276} # Default London @tool def get_weather(lat: float, lng: float) -> dict[str, str]: """Get the weather at a location.""" print(f"Tool: Getting weather for lat={lat}, lng={lng}") # Replace with actual API call in a real app # Dummy logic based on lat if lat > 45: # Northern locations return {"temperature": "15°C", "description": "Cloudy"} elif lat > 30: # Mid locations return {"temperature": "25°C", "description": "Sunny"} else: # Southern locations return {"temperature": "30°C", "description": "Very Sunny"} async def Answer_from_agent(message: str, history: List[List[str]]) -> AsyncGenerator[str, None]: """Processes message through LangChain agent, yielding intermediate steps as strings.""" # Convert Gradio history to LangChain messages lc_messages = [] for user_msg, ai_msg in history: if user_msg: lc_messages.append(HumanMessage(content=user_msg)) if ai_msg: # Important: Handle potential previous intermediate strings from AI # If the ai_msg contains markers like "🛠️ Using", it was an intermediate step. # For simplicity here, we assume full AI responses were stored previously. # A more robust solution might involve storing message types in history. if not ai_msg.startswith("🛠️ Using") and not ai_msg.startswith("Result:"): lc_messages.append(AIMessage(content=ai_msg)) lc_messages.append(HumanMessage(content=message)) llm = ChatOpenAI(temperature=0, model="gpt-4") memory = MemorySaver() # Be mindful of memory state if agent is re-initialized every time tools = [get_lat_lng, get_weather] agent_executor = create_react_agent(llm, tools, checkpointer=memory) # Use a unique thread_id per session if needed, or manage state differently # Using a fixed one like "abc123" means all users share the same memory if server restarts aren't frequent thread_id = "user_session_" + str(os.urandom(4).hex()) # Example: generate unique ID full_response = "" async for chunk in agent_executor.astream_events( {"messages": lc_messages}, config={"configurable": {"thread_id": thread_id}}, version="v1" # Use v1 for events streaming ): event = chunk["event"] data = chunk["data"] if event == "on_chat_model_stream": content = data["chunk"].content if content: full_response += content yield full_response elif event == "on_tool_start": tool_input_str = str(data.get('input', '')) yield f"🛠️ Using tool: **{data['name']}** with input: `{tool_input_str}`" elif event == "on_tool_end": tool_output_str = str(data.get('output', '')) yield f"Tool **{data['name']}** finished.\nResult: `{tool_output_str}`" if full_response: yield full_response if full_response and (not chunk or chunk["event"] != "on_chat_model_stream"): yield full_response # --- Gradio Interface (mostly unchanged) --- demo = gr.ChatInterface( fn=stream_from_agent, type="messages", title="🤖 AGent template", description="Ask about the weather anywhere! Watch as I gather the information step by step.", cache_examples=False, save_history=True, editable=True, ) if __name__ == "__main__": # Load environment variables try: openai_api_key = os.getenv("OPENAI_API_KEY") if openai_api_key: print("OPENAI_API_KEY found.") except: alert("Warning: OPENAI_API_KEY not found in environment variables.") demo.launch(debug=True, server_name="0.0.0.0")