File size: 11,068 Bytes
4eb9d09 da88570 4eb9d09 da88570 4eb9d09 da88570 4eb9d09 da88570 4eb9d09 da88570 4eb9d09 da88570 4eb9d09 da88570 4eb9d09 da88570 4eb9d09 da88570 4eb9d09 da88570 4eb9d09 da88570 4eb9d09 da88570 4eb9d09 da88570 4eb9d09 da88570 4eb9d09 da88570 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 |
import datetime
import pandas as pd
from lxml.html.defs import table_tags
from lxml.html.diff import end_tag
from src.utils.helpers import clean_html
from src.utils.markdown_processing.md_preprocessing import convert_html_to_md
from src.nlp.playground.pipelines.title_extractor import TitleExtractor
from src.utils.helpers import normalize_data
from src.persistence.db import *
from src.utils.apis.gpt_api import remove_boilerplate
# db even information schema:
# information:{
# actual: {
# title:
# dates: [
# {
# StartDate:
# EndDate:
# StartTime:
# EndTime:
# AdmittanceTime
# },...
# ],
# location
# adress:{
# street,
# housenumber,
# postalcode,
# city
# }
# organizers
# prices
# entryFree
# categories
# description
#
# }
# predicted: wie actual
# }
@st.cache_resource
def init_connection():
return init_db()
def remove_url():
result = db.event_urls.delete_one({"_id": current_element["_id"]})
st.session_state.elements = db.event_urls.find({"final":True, "class": "EventDetail"},{"_id":1, "url":1, "data":1, "html":1, "information":1})
def next():
db.event_urls.update_one({"_id": current_element["_id"]}, { "$set": { "information":event_information } })
st.session_state.index+=1
st.session_state.pop("time_ranges")
def prev():
st.session_state.index-=1
st.session_state.pop("time_ranges")
# Variables
db = init_connection()
if "index" not in st.session_state:
st.session_state.index = 0
if "elements" not in st.session_state:
elements = db.event_urls.find({"final":True, "class": "EventDetail"},{"_id":1, "url":1, "data":1, "html":1, "information":1})
# preprocessing of html content: get cleaned markdown
for el in elements:
if "data" not in el:
print(el["url"])
md = convert_html_to_md(clean_html(el["html"]))
try:
st.info("GPT-API Anfrage läuft")
gpt_md = remove_boilerplate(md)
st.info("Verarbeitung beendet")
el["data"] = gpt_md
db.event_urls.update_one({"_id": el["_id"]}, { "$set": { 'data': el["data"] } })
except Exception as e:
st.error(f"Es ist ein Fehler aufgetreten: {e} \n")
db.event_urls.delete_one({"_id": el["_id"]})
st.session_state.elements = db.event_urls.find({"final":True, "class": "EventDetail"},{"_id":1, "url":1, "data":1, "html":1, "information":1})
if "predictions_on" not in st.session_state:
st.session_state.predictions_on = False
current_element = st.session_state.elements[st.session_state.index]
predictions_on = st.toggle("Predictions an (Zeigt Extrahierte Daten an, die Seite lädt dadurch langsamer).")
if predictions_on != st.session_state.predictions_on:
st.session_state.predictions_on = predictions_on
if current_element:
if "time_ranges" not in st.session_state:
st.session_state.time_ranges = current_element.get("information", {}).get("actual", {}).get("dates", [])
current_url = current_element['url']
try:
st.write(f"""### Aktuelle Seite: \n{current_url} """)
if "data" not in current_element:
md = convert_html_to_md(clean_html(current_element["html"]))
try:
gpt_md = remove_boilerplate(md)
current_element["data"] = gpt_md
db.event_urls.update_one({"_id": current_element["_id"]}, { "$set": { 'data': current_element["data"] } })
except Exception as e:
st.error(f"Es ist ein Fehler aufgetreten: {e} \nDer Datenbankeintrag wird gelöscht.")
db.event_urls.delete_one({"_id": current_element["_id"]})
table_data = current_element["data"]
normalized_text = normalize_data(table_data)
predicted_title = None
predicted_date = None
predicted_organizers = None
if st.session_state.predictions_on:
predicted_title = TitleExtractor().extract_title(normalized_text)
# predicted_date = extract_entities(normalized_text, ["date", "date_range"])
# predicted_date = [ {d["text"],d["label"]} for d in predicted_date ] if predicted_date else None
with st.container(border=True, height=400):
st.markdown(normalized_text)
with st.expander("Code ansehen"):
with st.container( height=400):
st.code(normalized_text)
with st.expander("Veranstaltungsinformationen eingeben..."):
actual_title = st.text_input("Tatsächlicher Titel eingeben:", key="title"+ str(current_element["_id"]),
value=current_element.get("information", {}).get("actual", {}).get("title", None))
# Formular für neue Eingaben
with st.form("time_form"):
col1, col2 = st.columns(2) # Erstes Paar: Start- und Enddatum
with col1:
start_date = st.date_input("Startdatum", value=None, key="start_date" + str(st.session_state.index))
with col2:
end_date = st.date_input("Enddatum", value=None, key="end_date" + str(st.session_state.index))
col3, col4 = st.columns(2) # Zweites Paar: Start- und Endzeit
with col3:
start_time = st.time_input("Startzeit", value=None, key="start_time" + str(st.session_state.index))
with col4:
end_time = st.time_input("Endzeit", value=None, key="end_time" + str(st.session_state.index))
time_submitted = st.form_submit_button("Hinzufügen")
# Wenn das Formular abgesendet wird
if time_submitted:
new_entry = {
"start_date": datetime.datetime.combine(start_date,datetime.time(0)) if start_date else None,
"end_date": datetime.datetime.combine(end_date,datetime.time(0)) if end_date else None,
"start_time": datetime.datetime.combine(datetime.date.today(),start_time) if start_time else None,
"end_time": datetime.datetime.combine(datetime.date.today(),end_time) if end_time else None,
}
st.session_state.time_ranges.append(new_entry)
st.success("Zeitraum hinzugefügt!")
input_dates = st.session_state.time_ranges
actual_dates = "\n\n".join([
" ".join(filter(None, [ # Entfernt leere Strings automatisch
entry.get('start_date').strftime("%Y-%m-%d") if entry.get('start_date') else '',
f"- {entry.get('end_date').strftime('%Y-%m-%d')}" if entry.get('end_date') else '',
entry.get('start_time').strftime("%H:%M") if entry.get('start_time') else '',
f"- {entry.get('end_time').strftime('%H:%M')}" if entry.get('end_time') else ''
]))
for entry in input_dates
])
input_organizers = st.text_input("Tatsächlicher Veranstalter eingeben:", key="organizer" + str(current_element["_id"]),
value=",".join(current_element.get("information", {}).get("actual", {}).get("organizers", [])))
actual_organizers = input_organizers.split(",")
actual_location = st.text_input("Location Name", key="location" + str(current_element["_id"]),
value=current_element.get("information", {}).get("actual", {}).get("location", None))
with st.form("address_form"):
st.write("Adresse eingeben")
col1, col2 = st.columns([3, 1]) # Spalten für Straße & Hausnummer
street = col1.text_input("Straße")
house_number = col2.text_input("Hausnummer")
col3, col4 = st.columns([1, 3]) # Spalten für PLZ & Stadt
postal_code = col3.text_input("Postleitzahl")
city = col4.text_input("Stadt")
address_submitted = st.form_submit_button("Speichern")
address = current_element.get("information", {}).get("actual", {}).get("address", None)
if address_submitted:
address= {
"street": street,
"house_number": house_number,
"postal_code": postal_code,
"city": city,
}
actual_prices = st.text_input(
"Preise",
key="price" + str(current_element["_id"]),
value= ";".join(current_element.get("information", {}).get("actual", {}).get("prices", [])))
event_information = {
"actual":
{
"title":actual_title,
"dates":st.session_state.time_ranges,
"organizers":actual_organizers,
"location": actual_location,
"address":address,
"prices":actual_prices.split(";") if actual_prices else [],
}
}
table_data = {
"Information": [
"Titel",
"Daten",
"Veranstalter",
"Location",
"Straße",
"Hausnummer",
"Postleitzahl",
"Stadt",
"Preise"
],
"Tatsächlicher Wert":
[
actual_title,
actual_dates,
"\n\n".join(actual_organizers),
actual_location if actual_location else "",
address.get("street") if address else "",
address.get("house_number") if address else "",
address.get("postal_code") if address else "",
address.get("city") if address else "",
actual_prices.split(";") if actual_prices else "",
],
"Predicted Wert": [
predicted_title,
predicted_date,
predicted_organizers,
"",
"",
"",
"",
"",
""
],
}
df = pd.DataFrame(table_data)
st.subheader("Vergleich der Titel:")
st.table(df)
except Exception as e:
st.write(f"Fehler: {e}")
st.write(current_url)
col1, col2, col3, col4= st.columns([1, 1, 1, 1])
with col1:
st.button("Zurück", on_click=prev, disabled=st.session_state.index<1)
with col3:
st.button("URL löschen", on_click=remove_url)
with col4:
st.button("Speichern und Weiter",on_click=next)
else:
st.write("Es sind aktuell keine Daten in der DB zur Bearbeitung vorhanden.")
|