Spaces:
Running
Running
Update app.py
Browse files
app.py
CHANGED
@@ -1,81 +1,75 @@
|
|
1 |
import gradio as gr
|
2 |
import requests
|
3 |
from bs4 import BeautifulSoup
|
4 |
-
from transformers import pipeline
|
5 |
|
6 |
# Load summarization pipeline
|
7 |
summarizer = pipeline("summarization", model="sshleifer/distilbart-cnn-12-6")
|
8 |
-
tokenizer = AutoTokenizer.from_pretrained("sshleifer/distilbart-cnn-12-6")
|
9 |
|
10 |
def scrape_website(url):
|
11 |
-
"""
|
12 |
try:
|
13 |
headers = {'User-Agent': 'Mozilla/5.0'}
|
14 |
response = requests.get(url, headers=headers, timeout=10)
|
15 |
response.raise_for_status()
|
16 |
|
17 |
soup = BeautifulSoup(response.text, "html.parser")
|
18 |
-
|
19 |
-
# Extract title and meta description
|
20 |
-
title = soup.title.string.strip() if soup.title else ""
|
21 |
-
meta_desc = soup.find("meta", attrs={"name": "description"})
|
22 |
-
meta_desc = meta_desc["content"].strip() if meta_desc else ""
|
23 |
-
|
24 |
-
# Extract main text content
|
25 |
text_elements = soup.find_all(['p', 'article', 'main', 'section'])
|
26 |
text = " ".join([e.get_text(strip=True, separator=' ') for e in text_elements])
|
27 |
-
|
28 |
-
|
29 |
-
|
30 |
-
return full_content if full_content else "No meaningful content found."
|
31 |
-
|
32 |
except Exception as e:
|
33 |
return f"Scraping Error: {str(e)}"
|
34 |
|
35 |
-
def truncate_text(text, max_tokens=1024):
|
36 |
-
"""Properly truncates text at the token level."""
|
37 |
-
tokens = tokenizer.tokenize(text)
|
38 |
-
return tokenizer.convert_tokens_to_string(tokens[:max_tokens])
|
39 |
-
|
40 |
def summarize_website(url):
|
41 |
-
"""
|
42 |
try:
|
43 |
extracted_text = scrape_website(url)
|
44 |
-
|
45 |
if "Error" in extracted_text:
|
46 |
-
return "β "
|
47 |
|
48 |
if len(extracted_text.split()) < 50:
|
49 |
return "β οΈ Error: Insufficient content for summarization (minimum 50 words required)"
|
50 |
-
|
51 |
-
|
52 |
-
|
|
|
|
|
|
|
53 |
summary = summarizer(
|
54 |
truncated_text,
|
55 |
-
max_length=250, #
|
56 |
-
min_length=80,
|
57 |
do_sample=False
|
58 |
)
|
59 |
-
|
|
|
|
|
|
|
60 |
return f"## π Summary\n\n{summary[0]['summary_text']}"
|
61 |
-
|
62 |
except Exception as e:
|
63 |
return f"β Summarization Error: {str(e)}"
|
64 |
|
65 |
-
# Custom CSS for
|
66 |
css = """
|
67 |
@media screen and (max-width: 600px) {
|
68 |
-
.container {
|
69 |
-
|
70 |
-
|
|
|
|
|
|
|
71 |
}
|
72 |
"""
|
73 |
|
74 |
-
# Mobile-optimized interface with
|
75 |
with gr.Blocks(theme=gr.themes.Soft(), css=css, title="Website Summarizer") as app:
|
76 |
gr.Markdown("# π AI Website Summarizer")
|
77 |
gr.Markdown("Paste any website URL below to get an instant AI-powered summary!")
|
78 |
-
|
79 |
with gr.Row():
|
80 |
url_input = gr.Textbox(
|
81 |
label="Website URL",
|
@@ -84,14 +78,14 @@ with gr.Blocks(theme=gr.themes.Soft(), css=css, title="Website Summarizer") as a
|
|
84 |
max_lines=1,
|
85 |
elem_id="input-box"
|
86 |
)
|
87 |
-
|
88 |
with gr.Row():
|
89 |
submit_btn = gr.Button("Generate Summary π", variant="primary")
|
90 |
clear_btn = gr.Button("Clear π")
|
91 |
-
|
92 |
-
status = gr.Markdown("π Ready for input...", elem_id="status-msg")
|
93 |
output = gr.Markdown()
|
94 |
-
|
|
|
95 |
gr.Examples(
|
96 |
examples=[
|
97 |
["https://en.wikipedia.org/wiki/Large_language_model"],
|
@@ -101,24 +95,27 @@ with gr.Blocks(theme=gr.themes.Soft(), css=css, title="Website Summarizer") as a
|
|
101 |
label="Try these examples:",
|
102 |
examples_per_page=2
|
103 |
)
|
104 |
-
|
|
|
|
|
|
|
|
|
105 |
submit_btn.click(
|
106 |
fn=summarize_website,
|
107 |
inputs=url_input,
|
108 |
-
outputs=
|
109 |
api_name="summarize"
|
110 |
)
|
111 |
-
|
112 |
clear_btn.click(
|
113 |
-
fn=lambda: ("", "
|
114 |
inputs=None,
|
115 |
-
outputs=[url_input,
|
116 |
queue=False
|
117 |
)
|
118 |
|
119 |
-
#
|
120 |
app.launch(
|
121 |
-
server_name="0.0.0.0",
|
122 |
-
server_port=7860
|
123 |
-
favicon_path="https://www.svgrepo.com/show/355037/huggingface.svg"
|
124 |
)
|
|
|
1 |
import gradio as gr
|
2 |
import requests
|
3 |
from bs4 import BeautifulSoup
|
4 |
+
from transformers import pipeline
|
5 |
|
6 |
# Load summarization pipeline
|
7 |
summarizer = pipeline("summarization", model="sshleifer/distilbart-cnn-12-6")
|
|
|
8 |
|
9 |
def scrape_website(url):
|
10 |
+
"""Extracts text from a website with error handling"""
|
11 |
try:
|
12 |
headers = {'User-Agent': 'Mozilla/5.0'}
|
13 |
response = requests.get(url, headers=headers, timeout=10)
|
14 |
response.raise_for_status()
|
15 |
|
16 |
soup = BeautifulSoup(response.text, "html.parser")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
17 |
text_elements = soup.find_all(['p', 'article', 'main', 'section'])
|
18 |
text = " ".join([e.get_text(strip=True, separator=' ') for e in text_elements])
|
19 |
+
|
20 |
+
return text.strip() if text.strip() else "No content found"
|
21 |
+
|
|
|
|
|
22 |
except Exception as e:
|
23 |
return f"Scraping Error: {str(e)}"
|
24 |
|
|
|
|
|
|
|
|
|
|
|
25 |
def summarize_website(url):
|
26 |
+
"""Handles website summarization with proper truncation"""
|
27 |
try:
|
28 |
extracted_text = scrape_website(url)
|
29 |
+
|
30 |
if "Error" in extracted_text:
|
31 |
+
return f"β {extracted_text}"
|
32 |
|
33 |
if len(extracted_text.split()) < 50:
|
34 |
return "β οΈ Error: Insufficient content for summarization (minimum 50 words required)"
|
35 |
+
|
36 |
+
# Ensure input is within token limit
|
37 |
+
max_input_tokens = 1024 # Model limit
|
38 |
+
truncated_text = " ".join(extracted_text.split()[:max_input_tokens])
|
39 |
+
|
40 |
+
# Summarization
|
41 |
summary = summarizer(
|
42 |
truncated_text,
|
43 |
+
max_length=250, # Extended summary
|
44 |
+
min_length=80,
|
45 |
do_sample=False
|
46 |
)
|
47 |
+
|
48 |
+
if not summary or not isinstance(summary, list) or "summary_text" not in summary[0]:
|
49 |
+
return "β οΈ Error: Summarization failed. Try a different website."
|
50 |
+
|
51 |
return f"## π Summary\n\n{summary[0]['summary_text']}"
|
52 |
+
|
53 |
except Exception as e:
|
54 |
return f"β Summarization Error: {str(e)}"
|
55 |
|
56 |
+
# Custom CSS for mobile optimization
|
57 |
css = """
|
58 |
@media screen and (max-width: 600px) {
|
59 |
+
.container {
|
60 |
+
padding: 10px !important;
|
61 |
+
}
|
62 |
+
.input-box textarea {
|
63 |
+
font-size: 16px !important;
|
64 |
+
}
|
65 |
}
|
66 |
"""
|
67 |
|
68 |
+
# Mobile-optimized interface with Blocks API
|
69 |
with gr.Blocks(theme=gr.themes.Soft(), css=css, title="Website Summarizer") as app:
|
70 |
gr.Markdown("# π AI Website Summarizer")
|
71 |
gr.Markdown("Paste any website URL below to get an instant AI-powered summary!")
|
72 |
+
|
73 |
with gr.Row():
|
74 |
url_input = gr.Textbox(
|
75 |
label="Website URL",
|
|
|
78 |
max_lines=1,
|
79 |
elem_id="input-box"
|
80 |
)
|
81 |
+
|
82 |
with gr.Row():
|
83 |
submit_btn = gr.Button("Generate Summary π", variant="primary")
|
84 |
clear_btn = gr.Button("Clear π")
|
85 |
+
|
|
|
86 |
output = gr.Markdown()
|
87 |
+
|
88 |
+
# Example section
|
89 |
gr.Examples(
|
90 |
examples=[
|
91 |
["https://en.wikipedia.org/wiki/Large_language_model"],
|
|
|
95 |
label="Try these examples:",
|
96 |
examples_per_page=2
|
97 |
)
|
98 |
+
|
99 |
+
# Progress indicator
|
100 |
+
progress = gr.Textbox(visible=False)
|
101 |
+
|
102 |
+
# Event handlers
|
103 |
submit_btn.click(
|
104 |
fn=summarize_website,
|
105 |
inputs=url_input,
|
106 |
+
outputs=output,
|
107 |
api_name="summarize"
|
108 |
)
|
109 |
+
|
110 |
clear_btn.click(
|
111 |
+
fn=lambda: ("", ""),
|
112 |
inputs=None,
|
113 |
+
outputs=[url_input, output],
|
114 |
queue=False
|
115 |
)
|
116 |
|
117 |
+
# Launch the app without broken favicon
|
118 |
app.launch(
|
119 |
+
server_name="0.0.0.0",
|
120 |
+
server_port=7860
|
|
|
121 |
)
|