File size: 16,657 Bytes
bef93cb
 
 
 
 
 
d2df69e
bef93cb
 
 
 
 
4f5f090
40d3c00
 
 
2190187
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
37da0c0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
50e7067
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
013949c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
fd94a95
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7a61f75
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7b9a3c8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
22cc657
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
30775d6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a06f38e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
34e800c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
fccc18d
 
 
 
 
 
6db7f7f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
fccc18d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e0bfcd4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
40d3c00
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
---
title: Demo
emoji: πŸ‘€
colorFrom: green
colorTo: red
sdk: gradio
sdk_version: 5.14.0
app_file: app.py
pinned: false
license: apache-2.0
---

Check out the configuration reference at https://huggingface.co./docs/hub/spaces-config-reference# AdaptSum
# AdaptSum

AdaptSum stands for Adaptive Summarization. This project focuses on developing an LLM-powered system for dynamic summarization. Instead of generating entirely new summaries with each update, the system intelligently identifies and modifies only the necessary parts of the existing summary. This approach aims to create a more efficient and fluid summarization process within a continuous chat interaction with an LLM.

# Instructions

1. Install dependencies
```shell
$ pip install requirements.txt
```

2. Setup Gemini API Key
```shell
$ export GEMINI_API_KEY=xxxxx
```
> note that GEMINI API KEY should be obtained from Google AI Studio. Vertex AI is not supported at the moment (this is because Gemini SDK does not provide file uploading functionality for Vertex AI usage now).

3. Run Gradio app
```shell
$ python main.py # or gradio main.py
```

# Acknowledgments
This is a project built during the Vertex sprints held by Google's ML Developer Programs team. We are thankful to be granted good amount of GCP credits to do this project. 
# AdaptSum

AdaptSum stands for Adaptive Summarization. This project focuses on developing an LLM-powered system for dynamic summarization. Instead of generating entirely new summaries with each update, the system intelligently identifies and modifies only the necessary parts of the existing summary. This approach aims to create a more efficient and fluid summarization process within a continuous chat interaction with an LLM.

# Instructions

1. Install dependencies
```shell
$ pip install requirements.txt
```

2. Setup Gemini API Key
```shell
$ export GEMINI_API_KEY=xxxxx
```
> note that GEMINI API KEY should be obtained from Google AI Studio. Vertex AI is not supported at the moment (this is because Gemini SDK does not provide file uploading functionality for Vertex AI usage now).

3. Run Gradio app
```shell
$ python main.py # or gradio main.py
```

# Acknowledgments
This is a project built during the Vertex sprints held by Google's ML Developer Programs team. We are thankful to be granted good amount of GCP credits to do this project. 
# AdaptSum

AdaptSum stands for Adaptive Summarization. This project focuses on developing an LLM-powered system for dynamic summarization. Instead of generating entirely new summaries with each update, the system intelligently identifies and modifies only the necessary parts of the existing summary. This approach aims to create a more efficient and fluid summarization process within a continuous chat interaction with an LLM.

# Instructions

1. Install dependencies
```shell
$ pip install requirements.txt
```

2. Setup Gemini API Key
```shell
$ export GEMINI_API_KEY=xxxxx
```
> note that GEMINI API KEY should be obtained from Google AI Studio. Vertex AI is not supported at the moment (this is because Gemini SDK does not provide file uploading functionality for Vertex AI usage now).

3. Run Gradio app
```shell
$ python main.py # or gradio main.py
```

# Acknowledgments
This is a project built during the Vertex sprints held by Google's ML Developer Programs team. We are thankful to be granted good amount of GCP credits to do this project. 
# AdaptSum

AdaptSum stands for Adaptive Summarization. This project focuses on developing an LLM-powered system for dynamic summarization. Instead of generating entirely new summaries with each update, the system intelligently identifies and modifies only the necessary parts of the existing summary. This approach aims to create a more efficient and fluid summarization process within a continuous chat interaction with an LLM.

# Instructions

1. Install dependencies
```shell
$ pip install requirements.txt
```

2. Setup Gemini API Key
```shell
$ export GEMINI_API_KEY=xxxxx
```
> note that GEMINI API KEY should be obtained from Google AI Studio. Vertex AI is not supported at the moment (this is because Gemini SDK does not provide file uploading functionality for Vertex AI usage now).

3. Run Gradio app
```shell
$ python main.py # or gradio main.py
```

# Acknowledgments
This is a project built during the Vertex sprints held by Google's ML Developer Programs team. We are thankful to be granted good amount of GCP credits to do this project. 
# AdaptSum

AdaptSum stands for Adaptive Summarization. This project focuses on developing an LLM-powered system for dynamic summarization. Instead of generating entirely new summaries with each update, the system intelligently identifies and modifies only the necessary parts of the existing summary. This approach aims to create a more efficient and fluid summarization process within a continuous chat interaction with an LLM.

# Instructions

1. Install dependencies
```shell
$ pip install requirements.txt
```

2. Setup Gemini API Key
```shell
$ export GEMINI_API_KEY=xxxxx
```
> note that GEMINI API KEY should be obtained from Google AI Studio. Vertex AI is not supported at the moment (this is because Gemini SDK does not provide file uploading functionality for Vertex AI usage now).

3. Run Gradio app
```shell
$ python main.py # or gradio main.py
```

# Acknowledgments
This is a project built during the Vertex sprints held by Google's ML Developer Programs team. We are thankful to be granted good amount of GCP credits to do this project. 
# AdaptSum

AdaptSum stands for Adaptive Summarization. This project focuses on developing an LLM-powered system for dynamic summarization. Instead of generating entirely new summaries with each update, the system intelligently identifies and modifies only the necessary parts of the existing summary. This approach aims to create a more efficient and fluid summarization process within a continuous chat interaction with an LLM.

# Instructions

1. Install dependencies
```shell
$ pip install requirements.txt
```

2. Setup Gemini API Key
```shell
$ export GEMINI_API_KEY=xxxxx
```
> note that GEMINI API KEY should be obtained from Google AI Studio. Vertex AI is not supported at the moment (this is because Gemini SDK does not provide file uploading functionality for Vertex AI usage now).

3. Run Gradio app
```shell
$ python main.py # or gradio main.py
```

# Acknowledgments
This is a project built during the Vertex sprints held by Google's ML Developer Programs team. We are thankful to be granted good amount of GCP credits to do this project. 
# AdaptSum

AdaptSum stands for Adaptive Summarization. This project focuses on developing an LLM-powered system for dynamic summarization. Instead of generating entirely new summaries with each update, the system intelligently identifies and modifies only the necessary parts of the existing summary. This approach aims to create a more efficient and fluid summarization process within a continuous chat interaction with an LLM.

# Instructions

1. Install dependencies
```shell
$ pip install requirements.txt
```

2. Setup Gemini API Key
```shell
$ export GEMINI_API_KEY=xxxxx
```
> note that GEMINI API KEY should be obtained from Google AI Studio. Vertex AI is not supported at the moment (this is because Gemini SDK does not provide file uploading functionality for Vertex AI usage now).

3. Run Gradio app
```shell
$ python main.py # or gradio main.py
```

# Acknowledgments
This is a project built during the Vertex sprints held by Google's ML Developer Programs team. We are thankful to be granted good amount of GCP credits to do this project. 
# AdaptSum

AdaptSum stands for Adaptive Summarization. This project focuses on developing an LLM-powered system for dynamic summarization. Instead of generating entirely new summaries with each update, the system intelligently identifies and modifies only the necessary parts of the existing summary. This approach aims to create a more efficient and fluid summarization process within a continuous chat interaction with an LLM.

# Instructions

1. Install dependencies
```shell
$ pip install requirements.txt
```

2. Setup Gemini API Key
```shell
$ export GEMINI_API_KEY=xxxxx
```
> note that GEMINI API KEY should be obtained from Google AI Studio. Vertex AI is not supported at the moment (this is because Gemini SDK does not provide file uploading functionality for Vertex AI usage now).

3. Run Gradio app
```shell
$ python main.py # or gradio main.py
```

# Acknowledgments
This is a project built during the Vertex sprints held by Google's ML Developer Programs team. We are thankful to be granted good amount of GCP credits to do this project. 
# AdaptSum

AdaptSum stands for Adaptive Summarization. This project focuses on developing an LLM-powered system for dynamic summarization. Instead of generating entirely new summaries with each update, the system intelligently identifies and modifies only the necessary parts of the existing summary. This approach aims to create a more efficient and fluid summarization process within a continuous chat interaction with an LLM.

# Instructions

1. Install dependencies
```shell
$ pip install requirements.txt
```

2. Setup Gemini API Key
```shell
$ export GEMINI_API_KEY=xxxxx
```
> note that GEMINI API KEY should be obtained from Google AI Studio. Vertex AI is not supported at the moment (this is because Gemini SDK does not provide file uploading functionality for Vertex AI usage now).

3. Run Gradio app
```shell
$ python main.py # or gradio main.py
```

# Acknowledgments
This is a project built during the Vertex sprints held by Google's ML Developer Programs team. We are thankful to be granted good amount of GCP credits to do this project. 
# AdaptSum

AdaptSum stands for Adaptive Summarization. This project focuses on developing an LLM-powered system for dynamic summarization. Instead of generating entirely new summaries with each update, the system intelligently identifies and modifies only the necessary parts of the existing summary. This approach aims to create a more efficient and fluid summarization process within a continuous chat interaction with an LLM.

# Instructions

1. Install dependencies
```shell
$ pip install requirements.txt
```

2. Setup Gemini API Key
```shell
$ export GEMINI_API_KEY=xxxxx
```
> note that GEMINI API KEY should be obtained from Google AI Studio. Vertex AI is not supported at the moment (this is because Gemini SDK does not provide file uploading functionality for Vertex AI usage now).

3. Run Gradio app
```shell
$ python main.py # or gradio main.py
```

# Acknowledgments
This is a project built during the Vertex sprints held by Google's ML Developer Programs team. We are thankful to be granted good amount of GCP credits to do this project. 
# AdaptSum

AdaptSum stands for Adaptive Summarization. This project focuses on developing an LLM-powered system for dynamic summarization. Instead of generating entirely new summaries with each update, the system intelligently identifies and modifies only the necessary parts of the existing summary. This approach aims to create a more efficient and fluid summarization process within a continuous chat interaction with an LLM.

# Instructions

1. Install dependencies
```shell
$ pip install requirements.txt
```

2. Setup Gemini API Key
```shell
$ export GEMINI_API_KEY=xxxxx
```
> note that GEMINI API KEY should be obtained from Google AI Studio. Vertex AI is not supported at the moment (this is because Gemini SDK does not provide file uploading functionality for Vertex AI usage now).

3. Run Gradio app
```shell
$ python main.py # or gradio main.py
```

# Acknowledgments
This is a project built during the Vertex sprints held by Google's ML Developer Programs team. We are thankful to be granted good amount of GCP credits to do this project. 
# AdaptSum

AdaptSum stands for Adaptive Summarization. This project focuses on developing an LLM-powered system for dynamic summarization. Instead of generating entirely new summaries with each update, the system intelligently identifies and modifies only the necessary parts of the existing summary. This approach aims to create a more efficient and fluid summarization process within a continuous chat interaction with an LLM.

# Instructions

1. Install dependencies
```shell
$ pip install requirements.txt
```

2. Setup Gemini API Key
```shell
$ export GEMINI_API_KEY=xxxxx
```
> note that GEMINI API KEY should be obtained from Google AI Studio. Vertex AI is not supported at the moment (this is because Gemini SDK does not provide file uploading functionality for Vertex AI usage now).

3. Run Gradio app
```shell
$ python main.py # or gradio main.py
```

# Acknowledgments
This is a project built during the Vertex sprints held by Google's ML Developer Programs team. We are thankful to be granted good amount of GCP credits to do this project. 
# AdaptSum

[![Sync to Hugging Face Spaces](https://github.com/deep-diver/AdaptSum/actions/workflows/sync_to_spaces.yml/badge.svg)](https://github.com/deep-diver/AdaptSum/actions/workflows/sync_to_spaces.yml)

AdaptSum stands for Adaptive Summarization. This project focuses on developing an LLM-powered system for dynamic summarization. Instead of generating entirely new summaries with each update, the system intelligently identifies and modifies only the necessary parts of the existing summary. This approach aims to create a more efficient and fluid summarization process within a continuous chat interaction with an LLM.

# Instructions

1. Install dependencies
```shell
$ pip install requirements.txt
```

2. Setup Gemini API Key
```shell
$ export GEMINI_API_KEY=xxxxx
```
> note that GEMINI API KEY should be obtained from Google AI Studio. Vertex AI is not supported at the moment (this is because Gemini SDK does not provide file uploading functionality for Vertex AI usage now).

3. Run Gradio app
```shell
$ python main.py # or gradio main.py
```

# Acknowledgments
This is a project built during the Vertex sprints held by Google's ML Developer Programs team. We are thankful to be granted good amount of GCP credits to do this project. 
# AdaptSum

[![Sync to Hugging Face Spaces](https://github.com/deep-diver/AdaptSum/actions/workflows/sync_to_spaces.yml/badge.svg)](https://github.com/deep-diver/AdaptSum/actions/workflows/sync_to_spaces.yml)

AdaptSum stands for Adaptive Summarization. This project focuses on developing an LLM-powered system for dynamic summarization. Instead of generating entirely new summaries with each update, the system intelligently identifies and modifies only the necessary parts of the existing summary. This approach aims to create a more efficient and fluid summarization process within a continuous chat interaction with an LLM.

# Instructions

1. Install dependencies
```shell
$ pip install requirements.txt
```

2. Setup Gemini API Key
```shell
$ export GEMINI_API_KEY=xxxxx
```
> note that GEMINI API KEY should be obtained from Google AI Studio. Vertex AI is not supported at the moment (this is because Gemini SDK does not provide file uploading functionality for Vertex AI usage now).

3. Run Gradio app
```shell
$ python main.py # or gradio main.py
```

# Acknowledgments
This is a project built during the Vertex sprints held by Google's ML Developer Programs team. We are thankful to be granted good amount of GCP credits to do this project. 
# AdaptSum

[![Sync to Hugging Face Spaces](https://github.com/deep-diver/AdaptSum/actions/workflows/sync_to_spaces.yml/badge.svg)](https://github.com/deep-diver/AdaptSum/actions/workflows/sync_to_spaces.yml)

AdaptSum stands for Adaptive Summarization. This project focuses on developing an LLM-powered system for dynamic summarization. Instead of generating entirely new summaries with each update, the system intelligently identifies and modifies only the necessary parts of the existing summary. This approach aims to create a more efficient and fluid summarization process within a continuous chat interaction with an LLM.

# Instructions

1. Install dependencies
```shell
$ pip install requirements.txt
```

2. Setup Gemini API Key
```shell
$ export GEMINI_API_KEY=xxxxx
```
> note that GEMINI API KEY should be obtained from Google AI Studio. Vertex AI is not supported at the moment (this is because Gemini SDK does not provide file uploading functionality for Vertex AI usage now).

3. Run Gradio app
```shell
$ python main.py # or gradio main.py
```

# Acknowledgments
This is a project built during the Vertex sprints held by Google's ML Developer Programs team. We are thankful to be granted good amount of GCP credits to do this project.