import imageio, librosa import torch from PIL import Image from tqdm import tqdm import numpy as np def resize_image_by_longest_edge(image_path, target_size): image = Image.open(image_path).convert("RGB") width, height = image.size scale = target_size / max(width, height) new_size = (int(width * scale), int(height * scale)) return image.resize(new_size, Image.LANCZOS) def save_video(frames, save_path, fps, quality=9, ffmpeg_params=None): writer = imageio.get_writer( save_path, fps=fps, quality=quality, ffmpeg_params=ffmpeg_params ) for frame in tqdm(frames, desc="Saving video"): frame = np.array(frame) writer.append_data(frame) writer.close() def get_audio_features(wav2vec, audio_processor, audio_path, fps, num_frames): sr = 16000 audio_input, sample_rate = librosa.load(audio_path, sr=sr) # 采样率为 16kHz start_time = 0 # end_time = (0 + (num_frames - 1) * 1) / fps end_time = num_frames / fps start_sample = int(start_time * sr) end_sample = int(end_time * sr) try: audio_segment = audio_input[start_sample:end_sample] except: audio_segment = audio_input input_values = audio_processor( audio_segment, sampling_rate=sample_rate, return_tensors="pt" ).input_values.to("cuda") with torch.no_grad(): fea = wav2vec(input_values).last_hidden_state return fea