import torch, copy from ..models.utils import init_weights_on_device def cast_to(weight, dtype, device): r = torch.empty_like(weight, dtype=dtype, device=device) r.copy_(weight) return r class AutoWrappedModule(torch.nn.Module): def __init__(self, module: torch.nn.Module, offload_dtype, offload_device, onload_dtype, onload_device, computation_dtype, computation_device): super().__init__() self.module = module.to(dtype=offload_dtype, device=offload_device) self.offload_dtype = offload_dtype self.offload_device = offload_device self.onload_dtype = onload_dtype self.onload_device = onload_device self.computation_dtype = computation_dtype self.computation_device = computation_device self.state = 0 def offload(self): if self.state == 1 and (self.offload_dtype != self.onload_dtype or self.offload_device != self.onload_device): self.module.to(dtype=self.offload_dtype, device=self.offload_device) self.state = 0 def onload(self): if self.state == 0 and (self.offload_dtype != self.onload_dtype or self.offload_device != self.onload_device): self.module.to(dtype=self.onload_dtype, device=self.onload_device) self.state = 1 def forward(self, *args, **kwargs): if self.onload_dtype == self.computation_dtype and self.onload_device == self.computation_device: module = self.module else: module = copy.deepcopy(self.module).to(dtype=self.computation_dtype, device=self.computation_device) return module(*args, **kwargs) class AutoWrappedLinear(torch.nn.Linear): def __init__(self, module: torch.nn.Linear, offload_dtype, offload_device, onload_dtype, onload_device, computation_dtype, computation_device): with init_weights_on_device(device=torch.device("meta")): super().__init__(in_features=module.in_features, out_features=module.out_features, bias=module.bias is not None, dtype=offload_dtype, device=offload_device) self.weight = module.weight self.bias = module.bias self.offload_dtype = offload_dtype self.offload_device = offload_device self.onload_dtype = onload_dtype self.onload_device = onload_device self.computation_dtype = computation_dtype self.computation_device = computation_device self.state = 0 def offload(self): if self.state == 1 and (self.offload_dtype != self.onload_dtype or self.offload_device != self.onload_device): self.to(dtype=self.offload_dtype, device=self.offload_device) self.state = 0 def onload(self): if self.state == 0 and (self.offload_dtype != self.onload_dtype or self.offload_device != self.onload_device): self.to(dtype=self.onload_dtype, device=self.onload_device) self.state = 1 def forward(self, x, *args, **kwargs): if self.onload_dtype == self.computation_dtype and self.onload_device == self.computation_device: weight, bias = self.weight, self.bias else: weight = cast_to(self.weight, self.computation_dtype, self.computation_device) bias = None if self.bias is None else cast_to(self.bias, self.computation_dtype, self.computation_device) return torch.nn.functional.linear(x, weight, bias) def enable_vram_management_recursively(model: torch.nn.Module, module_map: dict, module_config: dict, max_num_param=None, overflow_module_config: dict = None, total_num_param=0): for name, module in model.named_children(): for source_module, target_module in module_map.items(): if isinstance(module, source_module): num_param = sum(p.numel() for p in module.parameters()) if max_num_param is not None and total_num_param + num_param > max_num_param: module_config_ = overflow_module_config else: module_config_ = module_config module_ = target_module(module, **module_config_) setattr(model, name, module_) total_num_param += num_param break else: total_num_param = enable_vram_management_recursively(module, module_map, module_config, max_num_param, overflow_module_config, total_num_param) return total_num_param def enable_vram_management(model: torch.nn.Module, module_map: dict, module_config: dict, max_num_param=None, overflow_module_config: dict = None): enable_vram_management_recursively(model, module_map, module_config, max_num_param, overflow_module_config, total_num_param=0) model.vram_management_enabled = True