import torch class FlowMatchScheduler(): def __init__(self, num_inference_steps=100, num_train_timesteps=1000, shift=3.0, sigma_max=1.0, sigma_min=0.003/1.002, inverse_timesteps=False, extra_one_step=False, reverse_sigmas=False): self.num_train_timesteps = num_train_timesteps self.shift = shift self.sigma_max = sigma_max self.sigma_min = sigma_min self.inverse_timesteps = inverse_timesteps self.extra_one_step = extra_one_step self.reverse_sigmas = reverse_sigmas self.set_timesteps(num_inference_steps) def set_timesteps(self, num_inference_steps=100, denoising_strength=1.0, training=False, shift=None): if shift is not None: self.shift = shift sigma_start = self.sigma_min + (self.sigma_max - self.sigma_min) * denoising_strength if self.extra_one_step: self.sigmas = torch.linspace(sigma_start, self.sigma_min, num_inference_steps + 1)[:-1] else: self.sigmas = torch.linspace(sigma_start, self.sigma_min, num_inference_steps) if self.inverse_timesteps: self.sigmas = torch.flip(self.sigmas, dims=[0]) self.sigmas = self.shift * self.sigmas / (1 + (self.shift - 1) * self.sigmas) if self.reverse_sigmas: self.sigmas = 1 - self.sigmas self.timesteps = self.sigmas * self.num_train_timesteps if training: x = self.timesteps y = torch.exp(-2 * ((x - num_inference_steps / 2) / num_inference_steps) ** 2) y_shifted = y - y.min() bsmntw_weighing = y_shifted * (num_inference_steps / y_shifted.sum()) self.linear_timesteps_weights = bsmntw_weighing def step(self, model_output, timestep, sample, to_final=False): if isinstance(timestep, torch.Tensor): timestep = timestep.cpu() timestep_id = torch.argmin((self.timesteps - timestep).abs()) sigma = self.sigmas[timestep_id] if to_final or timestep_id + 1 >= len(self.timesteps): sigma_ = 1 if (self.inverse_timesteps or self.reverse_sigmas) else 0 else: sigma_ = self.sigmas[timestep_id + 1] prev_sample = sample + model_output * (sigma_ - sigma) return prev_sample def return_to_timestep(self, timestep, sample, sample_stablized): if isinstance(timestep, torch.Tensor): timestep = timestep.cpu() timestep_id = torch.argmin((self.timesteps - timestep).abs()) sigma = self.sigmas[timestep_id] model_output = (sample - sample_stablized) / sigma return model_output def add_noise(self, original_samples, noise, timestep): if isinstance(timestep, torch.Tensor): timestep = timestep.cpu() timestep_id = torch.argmin((self.timesteps - timestep).abs()) sigma = self.sigmas[timestep_id] sample = (1 - sigma) * original_samples + sigma * noise return sample def training_target(self, sample, noise, timestep): target = noise - sample return target def training_weight(self, timestep): timestep_id = torch.argmin((self.timesteps - timestep.to(self.timesteps.device)).abs()) weights = self.linear_timesteps_weights[timestep_id] return weights