Spaces:
Running
on
Zero
Running
on
Zero
from ..models import ModelManager | |
from ..models.wan_video_dit import WanModel | |
from ..models.wan_video_text_encoder import WanTextEncoder | |
from ..models.wan_video_vae import WanVideoVAE | |
from ..models.wan_video_image_encoder import WanImageEncoder | |
from ..schedulers.flow_match import FlowMatchScheduler | |
from .base import BasePipeline | |
from ..prompters import WanPrompter | |
import torch, os | |
from einops import rearrange | |
import numpy as np | |
from PIL import Image | |
from tqdm import tqdm | |
from ..vram_management import enable_vram_management, AutoWrappedModule, AutoWrappedLinear | |
from ..models.wan_video_text_encoder import T5RelativeEmbedding, T5LayerNorm | |
from ..models.wan_video_dit import WanLayerNorm, WanRMSNorm | |
from ..models.wan_video_vae import RMS_norm, CausalConv3d, Upsample | |
class WanVideoPipeline(BasePipeline): | |
def __init__(self, device="cuda", torch_dtype=torch.float16, tokenizer_path=None): | |
super().__init__(device=device, torch_dtype=torch_dtype) | |
self.scheduler = FlowMatchScheduler(shift=5, sigma_min=0.0, extra_one_step=True) | |
self.prompter = WanPrompter(tokenizer_path=tokenizer_path) | |
self.text_encoder: WanTextEncoder = None | |
self.image_encoder: WanImageEncoder = None | |
self.dit: WanModel = None | |
self.vae: WanVideoVAE = None | |
self.model_names = ['text_encoder', 'dit', 'vae'] | |
self.height_division_factor = 16 | |
self.width_division_factor = 16 | |
def enable_vram_management(self, num_persistent_param_in_dit=None): | |
dtype = next(iter(self.text_encoder.parameters())).dtype | |
enable_vram_management( | |
self.text_encoder, | |
module_map = { | |
torch.nn.Linear: AutoWrappedLinear, | |
torch.nn.Embedding: AutoWrappedModule, | |
T5RelativeEmbedding: AutoWrappedModule, | |
T5LayerNorm: AutoWrappedModule, | |
}, | |
module_config = dict( | |
offload_dtype=dtype, | |
offload_device="cpu", | |
onload_dtype=dtype, | |
onload_device="cpu", | |
computation_dtype=self.torch_dtype, | |
computation_device=self.device, | |
), | |
) | |
dtype = next(iter(self.dit.parameters())).dtype | |
enable_vram_management( | |
self.dit, | |
module_map = { | |
torch.nn.Linear: AutoWrappedLinear, | |
torch.nn.Conv3d: AutoWrappedModule, | |
torch.nn.LayerNorm: AutoWrappedModule, | |
WanLayerNorm: AutoWrappedModule, | |
WanRMSNorm: AutoWrappedModule, | |
}, | |
module_config = dict( | |
offload_dtype=dtype, | |
offload_device="cpu", | |
onload_dtype=dtype, | |
onload_device=self.device, | |
computation_dtype=self.torch_dtype, | |
computation_device=self.device, | |
), | |
max_num_param=num_persistent_param_in_dit, | |
overflow_module_config = dict( | |
offload_dtype=dtype, | |
offload_device="cpu", | |
onload_dtype=dtype, | |
onload_device="cpu", | |
computation_dtype=self.torch_dtype, | |
computation_device=self.device, | |
), | |
) | |
dtype = next(iter(self.vae.parameters())).dtype | |
enable_vram_management( | |
self.vae, | |
module_map = { | |
torch.nn.Linear: AutoWrappedLinear, | |
torch.nn.Conv2d: AutoWrappedModule, | |
RMS_norm: AutoWrappedModule, | |
CausalConv3d: AutoWrappedModule, | |
Upsample: AutoWrappedModule, | |
torch.nn.SiLU: AutoWrappedModule, | |
torch.nn.Dropout: AutoWrappedModule, | |
}, | |
module_config = dict( | |
offload_dtype=dtype, | |
offload_device="cpu", | |
onload_dtype=dtype, | |
onload_device=self.device, | |
computation_dtype=self.torch_dtype, | |
computation_device=self.device, | |
), | |
) | |
if self.image_encoder is not None: | |
dtype = next(iter(self.image_encoder.parameters())).dtype | |
enable_vram_management( | |
self.image_encoder, | |
module_map = { | |
torch.nn.Linear: AutoWrappedLinear, | |
torch.nn.Conv2d: AutoWrappedModule, | |
torch.nn.LayerNorm: AutoWrappedModule, | |
}, | |
module_config = dict( | |
offload_dtype=dtype, | |
offload_device="cpu", | |
onload_dtype=dtype, | |
onload_device="cpu", | |
computation_dtype=self.torch_dtype, | |
computation_device=self.device, | |
), | |
) | |
self.enable_cpu_offload() | |
def fetch_models(self, model_manager: ModelManager): | |
text_encoder_model_and_path = model_manager.fetch_model("wan_video_text_encoder", require_model_path=True) | |
if text_encoder_model_and_path is not None: | |
self.text_encoder, tokenizer_path = text_encoder_model_and_path | |
self.prompter.fetch_models(self.text_encoder) | |
self.prompter.fetch_tokenizer(os.path.join(os.path.dirname(tokenizer_path), "google/umt5-xxl")) | |
self.dit = model_manager.fetch_model("wan_video_dit") | |
self.vae = model_manager.fetch_model("wan_video_vae") | |
self.image_encoder = model_manager.fetch_model("wan_video_image_encoder") | |
def from_model_manager(model_manager: ModelManager, torch_dtype=None, device=None): | |
if device is None: device = model_manager.device | |
if torch_dtype is None: torch_dtype = model_manager.torch_dtype | |
pipe = WanVideoPipeline(device=device, torch_dtype=torch_dtype) | |
pipe.fetch_models(model_manager) | |
return pipe | |
def denoising_model(self): | |
return self.dit | |
def encode_prompt(self, prompt, positive=True): | |
prompt_emb = self.prompter.encode_prompt(prompt, positive=positive) | |
return {"context": prompt_emb} | |
def encode_image(self, image, num_frames, height, width): | |
with torch.amp.autocast(dtype=torch.bfloat16, device_type=torch.device(self.device).type): | |
image = self.preprocess_image(image.resize((width, height))).to(self.device) | |
clip_context = self.image_encoder.encode_image([image]) | |
msk = torch.ones(1, num_frames, height//8, width//8, device=self.device) | |
msk[:, 1:] = 0 | |
msk = torch.concat([torch.repeat_interleave(msk[:, 0:1], repeats=4, dim=1), msk[:, 1:]], dim=1) | |
msk = msk.view(1, msk.shape[1] // 4, 4, height//8, width//8) | |
msk = msk.transpose(1, 2)[0] | |
y = self.vae.encode([torch.concat([image.transpose(0, 1), torch.zeros(3, num_frames-1, height, width).to(image.device)], dim=1)], device=self.device)[0] | |
y = torch.concat([msk, y]) | |
return {"clip_fea": clip_context, "y": [y]} | |
def tensor2video(self, frames): | |
frames = rearrange(frames, "C T H W -> T H W C") | |
frames = ((frames.float() + 1) * 127.5).clip(0, 255).cpu().numpy().astype(np.uint8) | |
frames = [Image.fromarray(frame) for frame in frames] | |
return frames | |
def prepare_extra_input(self, latents=None): | |
return {"seq_len": latents.shape[2] * latents.shape[3] * latents.shape[4] // 4} | |
def encode_video(self, input_video, tiled=True, tile_size=(34, 34), tile_stride=(18, 16)): | |
with torch.amp.autocast(dtype=torch.bfloat16, device_type=torch.device(self.device).type): | |
latents = self.vae.encode(input_video, device=self.device, tiled=tiled, tile_size=tile_size, tile_stride=tile_stride) | |
return latents | |
def decode_video(self, latents, tiled=True, tile_size=(34, 34), tile_stride=(18, 16)): | |
with torch.amp.autocast(dtype=torch.bfloat16, device_type=torch.device(self.device).type): | |
frames = self.vae.decode(latents, device=self.device, tiled=tiled, tile_size=tile_size, tile_stride=tile_stride) | |
return frames | |
def set_ip(self, local_path): | |
pass | |
def __call__( | |
self, | |
prompt, | |
negative_prompt="", | |
input_image=None, | |
input_video=None, | |
denoising_strength=1.0, | |
seed=None, | |
rand_device="cpu", | |
height=480, | |
width=832, | |
num_frames=81, | |
cfg_scale=5.0, | |
audio_cfg_scale=None, | |
num_inference_steps=50, | |
sigma_shift=5.0, | |
tiled=True, | |
tile_size=(30, 52), | |
tile_stride=(15, 26), | |
progress_bar_cmd=tqdm, | |
progress_bar_st=None, | |
**kwargs, | |
): | |
# Parameter check | |
height, width = self.check_resize_height_width(height, width) | |
if num_frames % 4 != 1: | |
num_frames = (num_frames + 2) // 4 * 4 + 1 | |
print(f"Only `num_frames % 4 != 1` is acceptable. We round it up to {num_frames}.") | |
# Tiler parameters | |
tiler_kwargs = {"tiled": tiled, "tile_size": tile_size, "tile_stride": tile_stride} | |
# Scheduler | |
self.scheduler.set_timesteps(num_inference_steps, denoising_strength, shift=sigma_shift) | |
# Initialize noise | |
noise = self.generate_noise((1, 16, (num_frames - 1) // 4 + 1, height//8, width//8), seed=seed, device=rand_device, dtype=torch.float32).to(self.device) | |
if input_video is not None: | |
self.load_models_to_device(['vae']) | |
input_video = self.preprocess_images(input_video) | |
input_video = torch.stack(input_video, dim=2) | |
latents = self.encode_video(input_video, **tiler_kwargs).to(dtype=noise.dtype, device=noise.device) | |
latents = self.scheduler.add_noise(latents, noise, timestep=self.scheduler.timesteps[0]) | |
else: | |
latents = noise | |
# Encode prompts | |
self.load_models_to_device(["text_encoder"]) | |
prompt_emb_posi = self.encode_prompt(prompt, positive=True) | |
if cfg_scale != 1.0: | |
prompt_emb_nega = self.encode_prompt(negative_prompt, positive=False) | |
# Encode image | |
if input_image is not None and self.image_encoder is not None: | |
self.load_models_to_device(["image_encoder", "vae"]) | |
image_emb = self.encode_image(input_image, num_frames, height, width) | |
else: | |
image_emb = {} | |
# Extra input | |
extra_input = self.prepare_extra_input(latents) | |
# Denoise | |
self.load_models_to_device(["dit"]) | |
with torch.amp.autocast(dtype=torch.bfloat16, device_type=torch.device(self.device).type): | |
for progress_id, timestep in enumerate(progress_bar_cmd(self.scheduler.timesteps)): | |
timestep = timestep.unsqueeze(0).to(dtype=torch.float32, device=self.device) | |
# Inference | |
noise_pred_posi = self.dit(latents, timestep=timestep, **prompt_emb_posi, **image_emb, **extra_input, **kwargs) # (zt,audio,prompt) | |
if audio_cfg_scale is not None: | |
audio_scale = kwargs['audio_scale'] | |
kwargs['audio_scale'] = 0.0 | |
noise_pred_noaudio = self.dit(latents, timestep=timestep, **prompt_emb_posi, **image_emb, **extra_input, **kwargs) #(zt,0,prompt) | |
# kwargs['ip_scale'] = ip_scale | |
if cfg_scale != 1.0: #prompt cfg | |
noise_pred_no_cond = self.dit(latents, timestep=timestep, **prompt_emb_nega, **image_emb, **extra_input, **kwargs) # (zt,0,0) | |
noise_pred = noise_pred_no_cond + cfg_scale * (noise_pred_noaudio - noise_pred_no_cond) + audio_cfg_scale * (noise_pred_posi - noise_pred_noaudio) | |
else: | |
noise_pred = noise_pred_noaudio + audio_cfg_scale * (noise_pred_posi - noise_pred_noaudio) | |
kwargs['audio_scale'] = audio_scale | |
else: | |
if cfg_scale != 1.0: | |
noise_pred_nega = self.dit(latents, timestep=timestep, **prompt_emb_nega, **image_emb, **extra_input, **kwargs) #(zt,audio,0) | |
noise_pred = noise_pred_nega + cfg_scale * (noise_pred_posi - noise_pred_nega) | |
else: | |
noise_pred = noise_pred_posi | |
# Scheduler | |
latents = self.scheduler.step(noise_pred, self.scheduler.timesteps[progress_id], latents) | |
# Decode | |
self.load_models_to_device(['vae']) | |
frames = self.decode_video(latents, **tiler_kwargs) | |
self.load_models_to_device([]) | |
frames = self.tensor2video(frames[0]) | |
return frames | |