Spaces:
Running
on
Zero
Running
on
Zero
from einops import rearrange, repeat | |
import torch | |
import torch.nn as nn | |
import torch.nn.functional as F | |
from tqdm import tqdm | |
CACHE_T = 2 | |
def check_is_instance(model, module_class): | |
if isinstance(model, module_class): | |
return True | |
if hasattr(model, "module") and isinstance(model.module, module_class): | |
return True | |
return False | |
def block_causal_mask(x, block_size): | |
# params | |
b, n, s, _, device = *x.size(), x.device | |
assert s % block_size == 0 | |
num_blocks = s // block_size | |
# build mask | |
mask = torch.zeros(b, n, s, s, dtype=torch.bool, device=device) | |
for i in range(num_blocks): | |
mask[:, :, | |
i * block_size:(i + 1) * block_size, :(i + 1) * block_size] = 1 | |
return mask | |
class CausalConv3d(nn.Conv3d): | |
""" | |
Causal 3d convolusion. | |
""" | |
def __init__(self, *args, **kwargs): | |
super().__init__(*args, **kwargs) | |
self._padding = (self.padding[2], self.padding[2], self.padding[1], | |
self.padding[1], 2 * self.padding[0], 0) | |
self.padding = (0, 0, 0) | |
def forward(self, x, cache_x=None): | |
padding = list(self._padding) | |
if cache_x is not None and self._padding[4] > 0: | |
cache_x = cache_x.to(x.device) | |
x = torch.cat([cache_x, x], dim=2) | |
padding[4] -= cache_x.shape[2] | |
x = F.pad(x, padding) | |
return super().forward(x) | |
class RMS_norm(nn.Module): | |
def __init__(self, dim, channel_first=True, images=True, bias=False): | |
super().__init__() | |
broadcastable_dims = (1, 1, 1) if not images else (1, 1) | |
shape = (dim, *broadcastable_dims) if channel_first else (dim,) | |
self.channel_first = channel_first | |
self.scale = dim**0.5 | |
self.gamma = nn.Parameter(torch.ones(shape)) | |
self.bias = nn.Parameter(torch.zeros(shape)) if bias else 0. | |
def forward(self, x): | |
return F.normalize( | |
x, dim=(1 if self.channel_first else | |
-1)) * self.scale * self.gamma + self.bias | |
class Upsample(nn.Upsample): | |
def forward(self, x): | |
""" | |
Fix bfloat16 support for nearest neighbor interpolation. | |
""" | |
return super().forward(x.float()).type_as(x) | |
class Resample(nn.Module): | |
def __init__(self, dim, mode): | |
assert mode in ('none', 'upsample2d', 'upsample3d', 'downsample2d', | |
'downsample3d') | |
super().__init__() | |
self.dim = dim | |
self.mode = mode | |
# layers | |
if mode == 'upsample2d': | |
self.resample = nn.Sequential( | |
Upsample(scale_factor=(2., 2.), mode='nearest-exact'), | |
nn.Conv2d(dim, dim // 2, 3, padding=1)) | |
elif mode == 'upsample3d': | |
self.resample = nn.Sequential( | |
Upsample(scale_factor=(2., 2.), mode='nearest-exact'), | |
nn.Conv2d(dim, dim // 2, 3, padding=1)) | |
self.time_conv = CausalConv3d(dim, | |
dim * 2, (3, 1, 1), | |
padding=(1, 0, 0)) | |
elif mode == 'downsample2d': | |
self.resample = nn.Sequential( | |
nn.ZeroPad2d((0, 1, 0, 1)), | |
nn.Conv2d(dim, dim, 3, stride=(2, 2))) | |
elif mode == 'downsample3d': | |
self.resample = nn.Sequential( | |
nn.ZeroPad2d((0, 1, 0, 1)), | |
nn.Conv2d(dim, dim, 3, stride=(2, 2))) | |
self.time_conv = CausalConv3d(dim, | |
dim, (3, 1, 1), | |
stride=(2, 1, 1), | |
padding=(0, 0, 0)) | |
else: | |
self.resample = nn.Identity() | |
def forward(self, x, feat_cache=None, feat_idx=[0]): | |
b, c, t, h, w = x.size() | |
if self.mode == 'upsample3d': | |
if feat_cache is not None: | |
idx = feat_idx[0] | |
if feat_cache[idx] is None: | |
feat_cache[idx] = 'Rep' | |
feat_idx[0] += 1 | |
else: | |
cache_x = x[:, :, -CACHE_T:, :, :].clone() | |
if cache_x.shape[2] < 2 and feat_cache[ | |
idx] is not None and feat_cache[idx] != 'Rep': | |
# cache last frame of last two chunk | |
cache_x = torch.cat([ | |
feat_cache[idx][:, :, -1, :, :].unsqueeze(2).to( | |
cache_x.device), cache_x | |
], | |
dim=2) | |
if cache_x.shape[2] < 2 and feat_cache[ | |
idx] is not None and feat_cache[idx] == 'Rep': | |
cache_x = torch.cat([ | |
torch.zeros_like(cache_x).to(cache_x.device), | |
cache_x | |
], | |
dim=2) | |
if feat_cache[idx] == 'Rep': | |
x = self.time_conv(x) | |
else: | |
x = self.time_conv(x, feat_cache[idx]) | |
feat_cache[idx] = cache_x | |
feat_idx[0] += 1 | |
x = x.reshape(b, 2, c, t, h, w) | |
x = torch.stack((x[:, 0, :, :, :, :], x[:, 1, :, :, :, :]), | |
3) | |
x = x.reshape(b, c, t * 2, h, w) | |
t = x.shape[2] | |
x = rearrange(x, 'b c t h w -> (b t) c h w') | |
x = self.resample(x) | |
x = rearrange(x, '(b t) c h w -> b c t h w', t=t) | |
if self.mode == 'downsample3d': | |
if feat_cache is not None: | |
idx = feat_idx[0] | |
if feat_cache[idx] is None: | |
feat_cache[idx] = x.clone() | |
feat_idx[0] += 1 | |
else: | |
cache_x = x[:, :, -1:, :, :].clone() | |
x = self.time_conv( | |
torch.cat([feat_cache[idx][:, :, -1:, :, :], x], 2)) | |
feat_cache[idx] = cache_x | |
feat_idx[0] += 1 | |
return x | |
def init_weight(self, conv): | |
conv_weight = conv.weight | |
nn.init.zeros_(conv_weight) | |
c1, c2, t, h, w = conv_weight.size() | |
one_matrix = torch.eye(c1, c2) | |
init_matrix = one_matrix | |
nn.init.zeros_(conv_weight) | |
conv_weight.data[:, :, 1, 0, 0] = init_matrix | |
conv.weight.data.copy_(conv_weight) | |
nn.init.zeros_(conv.bias.data) | |
def init_weight2(self, conv): | |
conv_weight = conv.weight.data | |
nn.init.zeros_(conv_weight) | |
c1, c2, t, h, w = conv_weight.size() | |
init_matrix = torch.eye(c1 // 2, c2) | |
conv_weight[:c1 // 2, :, -1, 0, 0] = init_matrix | |
conv_weight[c1 // 2:, :, -1, 0, 0] = init_matrix | |
conv.weight.data.copy_(conv_weight) | |
nn.init.zeros_(conv.bias.data) | |
class ResidualBlock(nn.Module): | |
def __init__(self, in_dim, out_dim, dropout=0.0): | |
super().__init__() | |
self.in_dim = in_dim | |
self.out_dim = out_dim | |
# layers | |
self.residual = nn.Sequential( | |
RMS_norm(in_dim, images=False), nn.SiLU(), | |
CausalConv3d(in_dim, out_dim, 3, padding=1), | |
RMS_norm(out_dim, images=False), nn.SiLU(), nn.Dropout(dropout), | |
CausalConv3d(out_dim, out_dim, 3, padding=1)) | |
self.shortcut = CausalConv3d(in_dim, out_dim, 1) \ | |
if in_dim != out_dim else nn.Identity() | |
def forward(self, x, feat_cache=None, feat_idx=[0]): | |
h = self.shortcut(x) | |
for layer in self.residual: | |
if check_is_instance(layer, CausalConv3d) and feat_cache is not None: | |
idx = feat_idx[0] | |
cache_x = x[:, :, -CACHE_T:, :, :].clone() | |
if cache_x.shape[2] < 2 and feat_cache[idx] is not None: | |
# cache last frame of last two chunk | |
cache_x = torch.cat([ | |
feat_cache[idx][:, :, -1, :, :].unsqueeze(2).to( | |
cache_x.device), cache_x | |
], | |
dim=2) | |
x = layer(x, feat_cache[idx]) | |
feat_cache[idx] = cache_x | |
feat_idx[0] += 1 | |
else: | |
x = layer(x) | |
return x + h | |
class AttentionBlock(nn.Module): | |
""" | |
Causal self-attention with a single head. | |
""" | |
def __init__(self, dim): | |
super().__init__() | |
self.dim = dim | |
# layers | |
self.norm = RMS_norm(dim) | |
self.to_qkv = nn.Conv2d(dim, dim * 3, 1) | |
self.proj = nn.Conv2d(dim, dim, 1) | |
# zero out the last layer params | |
nn.init.zeros_(self.proj.weight) | |
def forward(self, x): | |
identity = x | |
b, c, t, h, w = x.size() | |
x = rearrange(x, 'b c t h w -> (b t) c h w') | |
x = self.norm(x) | |
# compute query, key, value | |
q, k, v = self.to_qkv(x).reshape(b * t, 1, c * 3, -1).permute( | |
0, 1, 3, 2).contiguous().chunk(3, dim=-1) | |
# apply attention | |
x = F.scaled_dot_product_attention( | |
q, | |
k, | |
v, | |
#attn_mask=block_causal_mask(q, block_size=h * w) | |
) | |
x = x.squeeze(1).permute(0, 2, 1).reshape(b * t, c, h, w) | |
# output | |
x = self.proj(x) | |
x = rearrange(x, '(b t) c h w-> b c t h w', t=t) | |
return x + identity | |
class Encoder3d(nn.Module): | |
def __init__(self, | |
dim=128, | |
z_dim=4, | |
dim_mult=[1, 2, 4, 4], | |
num_res_blocks=2, | |
attn_scales=[], | |
temperal_downsample=[True, True, False], | |
dropout=0.0): | |
super().__init__() | |
self.dim = dim | |
self.z_dim = z_dim | |
self.dim_mult = dim_mult | |
self.num_res_blocks = num_res_blocks | |
self.attn_scales = attn_scales | |
self.temperal_downsample = temperal_downsample | |
# dimensions | |
dims = [dim * u for u in [1] + dim_mult] | |
scale = 1.0 | |
# init block | |
self.conv1 = CausalConv3d(3, dims[0], 3, padding=1) | |
# downsample blocks | |
downsamples = [] | |
for i, (in_dim, out_dim) in enumerate(zip(dims[:-1], dims[1:])): | |
# residual (+attention) blocks | |
for _ in range(num_res_blocks): | |
downsamples.append(ResidualBlock(in_dim, out_dim, dropout)) | |
if scale in attn_scales: | |
downsamples.append(AttentionBlock(out_dim)) | |
in_dim = out_dim | |
# downsample block | |
if i != len(dim_mult) - 1: | |
mode = 'downsample3d' if temperal_downsample[ | |
i] else 'downsample2d' | |
downsamples.append(Resample(out_dim, mode=mode)) | |
scale /= 2.0 | |
self.downsamples = nn.Sequential(*downsamples) | |
# middle blocks | |
self.middle = nn.Sequential(ResidualBlock(out_dim, out_dim, dropout), | |
AttentionBlock(out_dim), | |
ResidualBlock(out_dim, out_dim, dropout)) | |
# output blocks | |
self.head = nn.Sequential(RMS_norm(out_dim, images=False), nn.SiLU(), | |
CausalConv3d(out_dim, z_dim, 3, padding=1)) | |
def forward(self, x, feat_cache=None, feat_idx=[0]): | |
if feat_cache is not None: | |
idx = feat_idx[0] | |
cache_x = x[:, :, -CACHE_T:, :, :].clone() | |
if cache_x.shape[2] < 2 and feat_cache[idx] is not None: | |
# cache last frame of last two chunk | |
cache_x = torch.cat([ | |
feat_cache[idx][:, :, -1, :, :].unsqueeze(2).to( | |
cache_x.device), cache_x | |
], | |
dim=2) | |
x = self.conv1(x, feat_cache[idx]) | |
feat_cache[idx] = cache_x | |
feat_idx[0] += 1 | |
else: | |
x = self.conv1(x) | |
## downsamples | |
for layer in self.downsamples: | |
if feat_cache is not None: | |
x = layer(x, feat_cache, feat_idx) | |
else: | |
x = layer(x) | |
## middle | |
for layer in self.middle: | |
if check_is_instance(layer, ResidualBlock) and feat_cache is not None: | |
x = layer(x, feat_cache, feat_idx) | |
else: | |
x = layer(x) | |
## head | |
for layer in self.head: | |
if check_is_instance(layer, CausalConv3d) and feat_cache is not None: | |
idx = feat_idx[0] | |
cache_x = x[:, :, -CACHE_T:, :, :].clone() | |
if cache_x.shape[2] < 2 and feat_cache[idx] is not None: | |
# cache last frame of last two chunk | |
cache_x = torch.cat([ | |
feat_cache[idx][:, :, -1, :, :].unsqueeze(2).to( | |
cache_x.device), cache_x | |
], | |
dim=2) | |
x = layer(x, feat_cache[idx]) | |
feat_cache[idx] = cache_x | |
feat_idx[0] += 1 | |
else: | |
x = layer(x) | |
return x | |
class Decoder3d(nn.Module): | |
def __init__(self, | |
dim=128, | |
z_dim=4, | |
dim_mult=[1, 2, 4, 4], | |
num_res_blocks=2, | |
attn_scales=[], | |
temperal_upsample=[False, True, True], | |
dropout=0.0): | |
super().__init__() | |
self.dim = dim | |
self.z_dim = z_dim | |
self.dim_mult = dim_mult | |
self.num_res_blocks = num_res_blocks | |
self.attn_scales = attn_scales | |
self.temperal_upsample = temperal_upsample | |
# dimensions | |
dims = [dim * u for u in [dim_mult[-1]] + dim_mult[::-1]] | |
scale = 1.0 / 2**(len(dim_mult) - 2) | |
# init block | |
self.conv1 = CausalConv3d(z_dim, dims[0], 3, padding=1) | |
# middle blocks | |
self.middle = nn.Sequential(ResidualBlock(dims[0], dims[0], dropout), | |
AttentionBlock(dims[0]), | |
ResidualBlock(dims[0], dims[0], dropout)) | |
# upsample blocks | |
upsamples = [] | |
for i, (in_dim, out_dim) in enumerate(zip(dims[:-1], dims[1:])): | |
# residual (+attention) blocks | |
if i == 1 or i == 2 or i == 3: | |
in_dim = in_dim // 2 | |
for _ in range(num_res_blocks + 1): | |
upsamples.append(ResidualBlock(in_dim, out_dim, dropout)) | |
if scale in attn_scales: | |
upsamples.append(AttentionBlock(out_dim)) | |
in_dim = out_dim | |
# upsample block | |
if i != len(dim_mult) - 1: | |
mode = 'upsample3d' if temperal_upsample[i] else 'upsample2d' | |
upsamples.append(Resample(out_dim, mode=mode)) | |
scale *= 2.0 | |
self.upsamples = nn.Sequential(*upsamples) | |
# output blocks | |
self.head = nn.Sequential(RMS_norm(out_dim, images=False), nn.SiLU(), | |
CausalConv3d(out_dim, 3, 3, padding=1)) | |
def forward(self, x, feat_cache=None, feat_idx=[0]): | |
## conv1 | |
if feat_cache is not None: | |
idx = feat_idx[0] | |
cache_x = x[:, :, -CACHE_T:, :, :].clone() | |
if cache_x.shape[2] < 2 and feat_cache[idx] is not None: | |
# cache last frame of last two chunk | |
cache_x = torch.cat([ | |
feat_cache[idx][:, :, -1, :, :].unsqueeze(2).to( | |
cache_x.device), cache_x | |
], | |
dim=2) | |
x = self.conv1(x, feat_cache[idx]) | |
feat_cache[idx] = cache_x | |
feat_idx[0] += 1 | |
else: | |
x = self.conv1(x) | |
## middle | |
for layer in self.middle: | |
if check_is_instance(layer, ResidualBlock) and feat_cache is not None: | |
x = layer(x, feat_cache, feat_idx) | |
else: | |
x = layer(x) | |
## upsamples | |
for layer in self.upsamples: | |
if feat_cache is not None: | |
x = layer(x, feat_cache, feat_idx) | |
else: | |
x = layer(x) | |
## head | |
for layer in self.head: | |
if check_is_instance(layer, CausalConv3d) and feat_cache is not None: | |
idx = feat_idx[0] | |
cache_x = x[:, :, -CACHE_T:, :, :].clone() | |
if cache_x.shape[2] < 2 and feat_cache[idx] is not None: | |
# cache last frame of last two chunk | |
cache_x = torch.cat([ | |
feat_cache[idx][:, :, -1, :, :].unsqueeze(2).to( | |
cache_x.device), cache_x | |
], | |
dim=2) | |
x = layer(x, feat_cache[idx]) | |
feat_cache[idx] = cache_x | |
feat_idx[0] += 1 | |
else: | |
x = layer(x) | |
return x | |
def count_conv3d(model): | |
count = 0 | |
for m in model.modules(): | |
if check_is_instance(m, CausalConv3d): | |
count += 1 | |
return count | |
class VideoVAE_(nn.Module): | |
def __init__(self, | |
dim=96, | |
z_dim=16, | |
dim_mult=[1, 2, 4, 4], | |
num_res_blocks=2, | |
attn_scales=[], | |
temperal_downsample=[False, True, True], | |
dropout=0.0): | |
super().__init__() | |
self.dim = dim | |
self.z_dim = z_dim | |
self.dim_mult = dim_mult | |
self.num_res_blocks = num_res_blocks | |
self.attn_scales = attn_scales | |
self.temperal_downsample = temperal_downsample | |
self.temperal_upsample = temperal_downsample[::-1] | |
# modules | |
self.encoder = Encoder3d(dim, z_dim * 2, dim_mult, num_res_blocks, | |
attn_scales, self.temperal_downsample, dropout) | |
self.conv1 = CausalConv3d(z_dim * 2, z_dim * 2, 1) | |
self.conv2 = CausalConv3d(z_dim, z_dim, 1) | |
self.decoder = Decoder3d(dim, z_dim, dim_mult, num_res_blocks, | |
attn_scales, self.temperal_upsample, dropout) | |
def forward(self, x): | |
mu, log_var = self.encode(x) | |
z = self.reparameterize(mu, log_var) | |
x_recon = self.decode(z) | |
return x_recon, mu, log_var | |
def encode(self, x, scale): # x: B, C, T, H, W | |
self.clear_cache() | |
## cache | |
t = x.shape[2] | |
iter_ = 1 + (t - 1) // 4 | |
for i in range(iter_): | |
self._enc_conv_idx = [0] | |
if i == 0: | |
out = self.encoder(x[:, :, :1, :, :], | |
feat_cache=self._enc_feat_map, | |
feat_idx=self._enc_conv_idx) | |
else: | |
out_ = self.encoder(x[:, :, 1 + 4 * (i - 1):1 + 4 * i, :, :], | |
feat_cache=self._enc_feat_map, | |
feat_idx=self._enc_conv_idx) | |
out = torch.cat([out, out_], 2) | |
mu, log_var = self.conv1(out).chunk(2, dim=1) | |
if isinstance(scale[0], torch.Tensor): | |
scale = [s.to(dtype=mu.dtype, device=mu.device) for s in scale] | |
mu = (mu - scale[0].view(1, self.z_dim, 1, 1, 1)) * scale[1].view( | |
1, self.z_dim, 1, 1, 1) | |
else: | |
scale = scale.to(dtype=mu.dtype, device=mu.device) | |
mu = (mu - scale[0]) * scale[1] | |
return mu | |
def decode(self, z, scale): | |
self.clear_cache() | |
# z: [b,c,t,h,w] | |
if isinstance(scale[0], torch.Tensor): | |
scale = [s.to(dtype=z.dtype, device=z.device) for s in scale] | |
z = z / scale[1].view(1, self.z_dim, 1, 1, 1) + scale[0].view( | |
1, self.z_dim, 1, 1, 1) | |
else: | |
scale = scale.to(dtype=z.dtype, device=z.device) | |
z = z / scale[1] + scale[0] | |
iter_ = z.shape[2] | |
x = self.conv2(z) | |
for i in range(iter_): | |
self._conv_idx = [0] | |
if i == 0: | |
out = self.decoder(x[:, :, i:i + 1, :, :], | |
feat_cache=self._feat_map, | |
feat_idx=self._conv_idx) | |
else: | |
out_ = self.decoder(x[:, :, i:i + 1, :, :], | |
feat_cache=self._feat_map, | |
feat_idx=self._conv_idx) | |
out = torch.cat([out, out_], 2) # may add tensor offload | |
return out | |
def reparameterize(self, mu, log_var): | |
std = torch.exp(0.5 * log_var) | |
eps = torch.randn_like(std) | |
return eps * std + mu | |
def sample(self, imgs, deterministic=False): | |
mu, log_var = self.encode(imgs) | |
if deterministic: | |
return mu | |
std = torch.exp(0.5 * log_var.clamp(-30.0, 20.0)) | |
return mu + std * torch.randn_like(std) | |
def clear_cache(self): | |
self._conv_num = count_conv3d(self.decoder) | |
self._conv_idx = [0] | |
self._feat_map = [None] * self._conv_num | |
# cache encode | |
self._enc_conv_num = count_conv3d(self.encoder) | |
self._enc_conv_idx = [0] | |
self._enc_feat_map = [None] * self._enc_conv_num | |
class WanVideoVAE(nn.Module): | |
def __init__(self, z_dim=16): | |
super().__init__() | |
mean = [ | |
-0.7571, -0.7089, -0.9113, 0.1075, -0.1745, 0.9653, -0.1517, 1.5508, | |
0.4134, -0.0715, 0.5517, -0.3632, -0.1922, -0.9497, 0.2503, -0.2921 | |
] | |
std = [ | |
2.8184, 1.4541, 2.3275, 2.6558, 1.2196, 1.7708, 2.6052, 2.0743, | |
3.2687, 2.1526, 2.8652, 1.5579, 1.6382, 1.1253, 2.8251, 1.9160 | |
] | |
self.mean = torch.tensor(mean) | |
self.std = torch.tensor(std) | |
self.scale = [self.mean, 1.0 / self.std] | |
# init model | |
self.model = VideoVAE_(z_dim=z_dim).eval().requires_grad_(False) | |
self.upsampling_factor = 8 | |
def build_1d_mask(self, length, left_bound, right_bound, border_width): | |
x = torch.ones((length,)) | |
if not left_bound: | |
x[:border_width] = (torch.arange(border_width) + 1) / border_width | |
if not right_bound: | |
x[-border_width:] = torch.flip((torch.arange(border_width) + 1) / border_width, dims=(0,)) | |
return x | |
def build_mask(self, data, is_bound, border_width): | |
_, _, _, H, W = data.shape | |
h = self.build_1d_mask(H, is_bound[0], is_bound[1], border_width[0]) | |
w = self.build_1d_mask(W, is_bound[2], is_bound[3], border_width[1]) | |
h = repeat(h, "H -> H W", H=H, W=W) | |
w = repeat(w, "W -> H W", H=H, W=W) | |
mask = torch.stack([h, w]).min(dim=0).values | |
mask = rearrange(mask, "H W -> 1 1 1 H W") | |
return mask | |
def tiled_decode(self, hidden_states, device, tile_size, tile_stride): | |
_, _, T, H, W = hidden_states.shape | |
size_h, size_w = tile_size | |
stride_h, stride_w = tile_stride | |
# Split tasks | |
tasks = [] | |
for h in range(0, H, stride_h): | |
if (h-stride_h >= 0 and h-stride_h+size_h >= H): continue | |
for w in range(0, W, stride_w): | |
if (w-stride_w >= 0 and w-stride_w+size_w >= W): continue | |
h_, w_ = h + size_h, w + size_w | |
tasks.append((h, h_, w, w_)) | |
data_device = "cpu" | |
computation_device = device | |
out_T = T * 4 - 3 | |
weight = torch.zeros((1, 1, out_T, H * self.upsampling_factor, W * self.upsampling_factor), dtype=hidden_states.dtype, device=data_device) | |
values = torch.zeros((1, 3, out_T, H * self.upsampling_factor, W * self.upsampling_factor), dtype=hidden_states.dtype, device=data_device) | |
for h, h_, w, w_ in tqdm(tasks, desc="VAE decoding"): | |
hidden_states_batch = hidden_states[:, :, :, h:h_, w:w_].to(computation_device) | |
hidden_states_batch = self.model.decode(hidden_states_batch, self.scale).to(data_device) | |
mask = self.build_mask( | |
hidden_states_batch, | |
is_bound=(h==0, h_>=H, w==0, w_>=W), | |
border_width=((size_h - stride_h) * self.upsampling_factor, (size_w - stride_w) * self.upsampling_factor) | |
).to(dtype=hidden_states.dtype, device=data_device) | |
target_h = h * self.upsampling_factor | |
target_w = w * self.upsampling_factor | |
values[ | |
:, | |
:, | |
:, | |
target_h:target_h + hidden_states_batch.shape[3], | |
target_w:target_w + hidden_states_batch.shape[4], | |
] += hidden_states_batch * mask | |
weight[ | |
:, | |
:, | |
:, | |
target_h: target_h + hidden_states_batch.shape[3], | |
target_w: target_w + hidden_states_batch.shape[4], | |
] += mask | |
values = values / weight | |
values = values.float().clamp_(-1, 1) | |
return values | |
def tiled_encode(self, video, device, tile_size, tile_stride): | |
_, _, T, H, W = video.shape | |
size_h, size_w = tile_size | |
stride_h, stride_w = tile_stride | |
# Split tasks | |
tasks = [] | |
for h in range(0, H, stride_h): | |
if (h-stride_h >= 0 and h-stride_h+size_h >= H): continue | |
for w in range(0, W, stride_w): | |
if (w-stride_w >= 0 and w-stride_w+size_w >= W): continue | |
h_, w_ = h + size_h, w + size_w | |
tasks.append((h, h_, w, w_)) | |
data_device = "cpu" | |
computation_device = device | |
out_T = (T + 3) // 4 | |
weight = torch.zeros((1, 1, out_T, H // self.upsampling_factor, W // self.upsampling_factor), dtype=video.dtype, device=data_device) | |
values = torch.zeros((1, 16, out_T, H // self.upsampling_factor, W // self.upsampling_factor), dtype=video.dtype, device=data_device) | |
for h, h_, w, w_ in tqdm(tasks, desc="VAE encoding"): | |
hidden_states_batch = video[:, :, :, h:h_, w:w_].to(computation_device) | |
hidden_states_batch = self.model.encode(hidden_states_batch, self.scale).to(data_device) | |
mask = self.build_mask( | |
hidden_states_batch, | |
is_bound=(h==0, h_>=H, w==0, w_>=W), | |
border_width=((size_h - stride_h) // self.upsampling_factor, (size_w - stride_w) // self.upsampling_factor) | |
).to(dtype=video.dtype, device=data_device) | |
target_h = h // self.upsampling_factor | |
target_w = w // self.upsampling_factor | |
values[ | |
:, | |
:, | |
:, | |
target_h:target_h + hidden_states_batch.shape[3], | |
target_w:target_w + hidden_states_batch.shape[4], | |
] += hidden_states_batch * mask | |
weight[ | |
:, | |
:, | |
:, | |
target_h: target_h + hidden_states_batch.shape[3], | |
target_w: target_w + hidden_states_batch.shape[4], | |
] += mask | |
values = values / weight | |
values = values.float() | |
return values | |
def single_encode(self, video, device): | |
video = video.to(device) | |
x = self.model.encode(video, self.scale) | |
return x.float() | |
def single_decode(self, hidden_state, device): | |
hidden_state = hidden_state.to(device) | |
video = self.model.decode(hidden_state, self.scale) | |
return video.float().clamp_(-1, 1) | |
def encode(self, videos, device, tiled=False, tile_size=(34, 34), tile_stride=(18, 16)): | |
videos = [video.to("cpu") for video in videos] | |
hidden_states = [] | |
for video in videos: | |
video = video.unsqueeze(0) | |
if tiled: | |
tile_size = (tile_size[0] * 8, tile_size[1] * 8) | |
tile_stride = (tile_stride[0] * 8, tile_stride[1] * 8) | |
hidden_state = self.tiled_encode(video, device, tile_size, tile_stride) | |
else: | |
hidden_state = self.single_encode(video, device) | |
hidden_state = hidden_state.squeeze(0) | |
hidden_states.append(hidden_state) | |
hidden_states = torch.stack(hidden_states) | |
return hidden_states | |
def decode(self, hidden_states, device, tiled=False, tile_size=(34, 34), tile_stride=(18, 16)): | |
hidden_states = [hidden_state.to("cpu") for hidden_state in hidden_states] | |
videos = [] | |
for hidden_state in hidden_states: | |
hidden_state = hidden_state.unsqueeze(0) | |
if tiled: | |
video = self.tiled_decode(hidden_state, device, tile_size, tile_stride) | |
else: | |
video = self.single_decode(hidden_state, device) | |
video = video.squeeze(0) | |
videos.append(video) | |
videos = torch.stack(videos) | |
return videos | |
def state_dict_converter(): | |
return WanVideoVAEStateDictConverter() | |
class WanVideoVAEStateDictConverter: | |
def __init__(self): | |
pass | |
def from_civitai(self, state_dict): | |
state_dict_ = {} | |
if 'model_state' in state_dict: | |
state_dict = state_dict['model_state'] | |
for name in state_dict: | |
state_dict_['model.' + name] = state_dict[name] | |
return state_dict_ | |