Spaces:
Running
on
Zero
Running
on
Zero
""" | |
Concise re-implementation of | |
``https://github.com/openai/CLIP'' and | |
``https://github.com/mlfoundations/open_clip''. | |
""" | |
import math | |
import torch | |
import torch.nn as nn | |
import torch.nn.functional as F | |
import torchvision.transforms as T | |
from .wan_video_dit import flash_attention | |
class SelfAttention(nn.Module): | |
def __init__(self, dim, num_heads, dropout=0.1, eps=1e-5): | |
assert dim % num_heads == 0 | |
super().__init__() | |
self.dim = dim | |
self.num_heads = num_heads | |
self.head_dim = dim // num_heads | |
self.eps = eps | |
# layers | |
self.q = nn.Linear(dim, dim) | |
self.k = nn.Linear(dim, dim) | |
self.v = nn.Linear(dim, dim) | |
self.o = nn.Linear(dim, dim) | |
self.dropout = nn.Dropout(dropout) | |
def forward(self, x, mask): | |
""" | |
x: [B, L, C]. | |
""" | |
b, s, c, n, d = *x.size(), self.num_heads, self.head_dim | |
# compute query, key, value | |
q = self.q(x).reshape(b, s, n, d).permute(0, 2, 1, 3) | |
k = self.k(x).reshape(b, s, n, d).permute(0, 2, 1, 3) | |
v = self.v(x).reshape(b, s, n, d).permute(0, 2, 1, 3) | |
# compute attention | |
p = self.dropout.p if self.training else 0.0 | |
x = F.scaled_dot_product_attention(q, k, v, mask, p) | |
x = x.permute(0, 2, 1, 3).reshape(b, s, c) | |
# output | |
x = self.o(x) | |
x = self.dropout(x) | |
return x | |
class AttentionBlock(nn.Module): | |
def __init__(self, dim, num_heads, post_norm, dropout=0.1, eps=1e-5): | |
super().__init__() | |
self.dim = dim | |
self.num_heads = num_heads | |
self.post_norm = post_norm | |
self.eps = eps | |
# layers | |
self.attn = SelfAttention(dim, num_heads, dropout, eps) | |
self.norm1 = nn.LayerNorm(dim, eps=eps) | |
self.ffn = nn.Sequential( | |
nn.Linear(dim, dim * 4), nn.GELU(), nn.Linear(dim * 4, dim), | |
nn.Dropout(dropout)) | |
self.norm2 = nn.LayerNorm(dim, eps=eps) | |
def forward(self, x, mask): | |
if self.post_norm: | |
x = self.norm1(x + self.attn(x, mask)) | |
x = self.norm2(x + self.ffn(x)) | |
else: | |
x = x + self.attn(self.norm1(x), mask) | |
x = x + self.ffn(self.norm2(x)) | |
return x | |
class XLMRoberta(nn.Module): | |
""" | |
XLMRobertaModel with no pooler and no LM head. | |
""" | |
def __init__(self, | |
vocab_size=250002, | |
max_seq_len=514, | |
type_size=1, | |
pad_id=1, | |
dim=1024, | |
num_heads=16, | |
num_layers=24, | |
post_norm=True, | |
dropout=0.1, | |
eps=1e-5): | |
super().__init__() | |
self.vocab_size = vocab_size | |
self.max_seq_len = max_seq_len | |
self.type_size = type_size | |
self.pad_id = pad_id | |
self.dim = dim | |
self.num_heads = num_heads | |
self.num_layers = num_layers | |
self.post_norm = post_norm | |
self.eps = eps | |
# embeddings | |
self.token_embedding = nn.Embedding(vocab_size, dim, padding_idx=pad_id) | |
self.type_embedding = nn.Embedding(type_size, dim) | |
self.pos_embedding = nn.Embedding(max_seq_len, dim, padding_idx=pad_id) | |
self.dropout = nn.Dropout(dropout) | |
# blocks | |
self.blocks = nn.ModuleList([ | |
AttentionBlock(dim, num_heads, post_norm, dropout, eps) | |
for _ in range(num_layers) | |
]) | |
# norm layer | |
self.norm = nn.LayerNorm(dim, eps=eps) | |
def forward(self, ids): | |
""" | |
ids: [B, L] of torch.LongTensor. | |
""" | |
b, s = ids.shape | |
mask = ids.ne(self.pad_id).long() | |
# embeddings | |
x = self.token_embedding(ids) + \ | |
self.type_embedding(torch.zeros_like(ids)) + \ | |
self.pos_embedding(self.pad_id + torch.cumsum(mask, dim=1) * mask) | |
if self.post_norm: | |
x = self.norm(x) | |
x = self.dropout(x) | |
# blocks | |
mask = torch.where( | |
mask.view(b, 1, 1, s).gt(0), 0.0, | |
torch.finfo(x.dtype).min) | |
for block in self.blocks: | |
x = block(x, mask) | |
# output | |
if not self.post_norm: | |
x = self.norm(x) | |
return x | |
def xlm_roberta_large(pretrained=False, | |
return_tokenizer=False, | |
device='cpu', | |
**kwargs): | |
""" | |
XLMRobertaLarge adapted from Huggingface. | |
""" | |
# params | |
cfg = dict( | |
vocab_size=250002, | |
max_seq_len=514, | |
type_size=1, | |
pad_id=1, | |
dim=1024, | |
num_heads=16, | |
num_layers=24, | |
post_norm=True, | |
dropout=0.1, | |
eps=1e-5) | |
cfg.update(**kwargs) | |
# init model | |
if pretrained: | |
from sora import DOWNLOAD_TO_CACHE | |
# init a meta model | |
with torch.device('meta'): | |
model = XLMRoberta(**cfg) | |
# load checkpoint | |
model.load_state_dict( | |
torch.load( | |
DOWNLOAD_TO_CACHE('models/xlm_roberta/xlm_roberta_large.pth'), | |
map_location=device), | |
assign=True) | |
else: | |
# init a model on device | |
with torch.device(device): | |
model = XLMRoberta(**cfg) | |
# init tokenizer | |
if return_tokenizer: | |
from sora.data import HuggingfaceTokenizer | |
tokenizer = HuggingfaceTokenizer( | |
name='xlm-roberta-large', | |
seq_len=model.text_len, | |
clean='whitespace') | |
return model, tokenizer | |
else: | |
return model | |
def pos_interpolate(pos, seq_len): | |
if pos.size(1) == seq_len: | |
return pos | |
else: | |
src_grid = int(math.sqrt(pos.size(1))) | |
tar_grid = int(math.sqrt(seq_len)) | |
n = pos.size(1) - src_grid * src_grid | |
return torch.cat([ | |
pos[:, :n], | |
F.interpolate( | |
pos[:, n:].float().reshape(1, src_grid, src_grid, -1).permute( | |
0, 3, 1, 2), | |
size=(tar_grid, tar_grid), | |
mode='bicubic', | |
align_corners=False).flatten(2).transpose(1, 2) | |
], | |
dim=1) | |
class QuickGELU(nn.Module): | |
def forward(self, x): | |
return x * torch.sigmoid(1.702 * x) | |
class LayerNorm(nn.LayerNorm): | |
def forward(self, x): | |
return super().forward(x.float()).type_as(x) | |
class SelfAttention(nn.Module): | |
def __init__(self, | |
dim, | |
num_heads, | |
causal=False, | |
attn_dropout=0.0, | |
proj_dropout=0.0): | |
assert dim % num_heads == 0 | |
super().__init__() | |
self.dim = dim | |
self.num_heads = num_heads | |
self.head_dim = dim // num_heads | |
self.causal = causal | |
self.attn_dropout = attn_dropout | |
self.proj_dropout = proj_dropout | |
# layers | |
self.to_qkv = nn.Linear(dim, dim * 3) | |
self.proj = nn.Linear(dim, dim) | |
def forward(self, x): | |
""" | |
x: [B, L, C]. | |
""" | |
b, s, c, n, d = *x.size(), self.num_heads, self.head_dim | |
# compute query, key, value | |
q, k, v = self.to_qkv(x).view(b, s, 3, n, d).unbind(2) | |
# compute attention | |
p = self.attn_dropout if self.training else 0.0 | |
x = flash_attention(q, k, v, dropout_p=p, causal=self.causal, version=2) | |
x = x.reshape(b, s, c) | |
# output | |
x = self.proj(x) | |
x = F.dropout(x, self.proj_dropout, self.training) | |
return x | |
class SwiGLU(nn.Module): | |
def __init__(self, dim, mid_dim): | |
super().__init__() | |
self.dim = dim | |
self.mid_dim = mid_dim | |
# layers | |
self.fc1 = nn.Linear(dim, mid_dim) | |
self.fc2 = nn.Linear(dim, mid_dim) | |
self.fc3 = nn.Linear(mid_dim, dim) | |
def forward(self, x): | |
x = F.silu(self.fc1(x)) * self.fc2(x) | |
x = self.fc3(x) | |
return x | |
class AttentionBlock(nn.Module): | |
def __init__(self, | |
dim, | |
mlp_ratio, | |
num_heads, | |
post_norm=False, | |
causal=False, | |
activation='quick_gelu', | |
attn_dropout=0.0, | |
proj_dropout=0.0, | |
norm_eps=1e-5): | |
assert activation in ['quick_gelu', 'gelu', 'swi_glu'] | |
super().__init__() | |
self.dim = dim | |
self.mlp_ratio = mlp_ratio | |
self.num_heads = num_heads | |
self.post_norm = post_norm | |
self.causal = causal | |
self.norm_eps = norm_eps | |
# layers | |
self.norm1 = LayerNorm(dim, eps=norm_eps) | |
self.attn = SelfAttention(dim, num_heads, causal, attn_dropout, | |
proj_dropout) | |
self.norm2 = LayerNorm(dim, eps=norm_eps) | |
if activation == 'swi_glu': | |
self.mlp = SwiGLU(dim, int(dim * mlp_ratio)) | |
else: | |
self.mlp = nn.Sequential( | |
nn.Linear(dim, int(dim * mlp_ratio)), | |
QuickGELU() if activation == 'quick_gelu' else nn.GELU(), | |
nn.Linear(int(dim * mlp_ratio), dim), nn.Dropout(proj_dropout)) | |
def forward(self, x): | |
if self.post_norm: | |
x = x + self.norm1(self.attn(x)) | |
x = x + self.norm2(self.mlp(x)) | |
else: | |
x = x + self.attn(self.norm1(x)) | |
x = x + self.mlp(self.norm2(x)) | |
return x | |
class AttentionPool(nn.Module): | |
def __init__(self, | |
dim, | |
mlp_ratio, | |
num_heads, | |
activation='gelu', | |
proj_dropout=0.0, | |
norm_eps=1e-5): | |
assert dim % num_heads == 0 | |
super().__init__() | |
self.dim = dim | |
self.mlp_ratio = mlp_ratio | |
self.num_heads = num_heads | |
self.head_dim = dim // num_heads | |
self.proj_dropout = proj_dropout | |
self.norm_eps = norm_eps | |
# layers | |
gain = 1.0 / math.sqrt(dim) | |
self.cls_embedding = nn.Parameter(gain * torch.randn(1, 1, dim)) | |
self.to_q = nn.Linear(dim, dim) | |
self.to_kv = nn.Linear(dim, dim * 2) | |
self.proj = nn.Linear(dim, dim) | |
self.norm = LayerNorm(dim, eps=norm_eps) | |
self.mlp = nn.Sequential( | |
nn.Linear(dim, int(dim * mlp_ratio)), | |
QuickGELU() if activation == 'quick_gelu' else nn.GELU(), | |
nn.Linear(int(dim * mlp_ratio), dim), nn.Dropout(proj_dropout)) | |
def forward(self, x): | |
""" | |
x: [B, L, C]. | |
""" | |
b, s, c, n, d = *x.size(), self.num_heads, self.head_dim | |
# compute query, key, value | |
q = self.to_q(self.cls_embedding).view(1, 1, n, d).expand(b, -1, -1, -1) | |
k, v = self.to_kv(x).view(b, s, 2, n, d).unbind(2) | |
# compute attention | |
x = flash_attention(q, k, v, version=2) | |
x = x.reshape(b, 1, c) | |
# output | |
x = self.proj(x) | |
x = F.dropout(x, self.proj_dropout, self.training) | |
# mlp | |
x = x + self.mlp(self.norm(x)) | |
return x[:, 0] | |
class VisionTransformer(nn.Module): | |
def __init__(self, | |
image_size=224, | |
patch_size=16, | |
dim=768, | |
mlp_ratio=4, | |
out_dim=512, | |
num_heads=12, | |
num_layers=12, | |
pool_type='token', | |
pre_norm=True, | |
post_norm=False, | |
activation='quick_gelu', | |
attn_dropout=0.0, | |
proj_dropout=0.0, | |
embedding_dropout=0.0, | |
norm_eps=1e-5): | |
if image_size % patch_size != 0: | |
print( | |
'[WARNING] image_size is not divisible by patch_size', | |
flush=True) | |
assert pool_type in ('token', 'token_fc', 'attn_pool') | |
out_dim = out_dim or dim | |
super().__init__() | |
self.image_size = image_size | |
self.patch_size = patch_size | |
self.num_patches = (image_size // patch_size)**2 | |
self.dim = dim | |
self.mlp_ratio = mlp_ratio | |
self.out_dim = out_dim | |
self.num_heads = num_heads | |
self.num_layers = num_layers | |
self.pool_type = pool_type | |
self.post_norm = post_norm | |
self.norm_eps = norm_eps | |
# embeddings | |
gain = 1.0 / math.sqrt(dim) | |
self.patch_embedding = nn.Conv2d( | |
3, | |
dim, | |
kernel_size=patch_size, | |
stride=patch_size, | |
bias=not pre_norm) | |
if pool_type in ('token', 'token_fc'): | |
self.cls_embedding = nn.Parameter(gain * torch.randn(1, 1, dim)) | |
self.pos_embedding = nn.Parameter(gain * torch.randn( | |
1, self.num_patches + | |
(1 if pool_type in ('token', 'token_fc') else 0), dim)) | |
self.dropout = nn.Dropout(embedding_dropout) | |
# transformer | |
self.pre_norm = LayerNorm(dim, eps=norm_eps) if pre_norm else None | |
self.transformer = nn.Sequential(*[ | |
AttentionBlock(dim, mlp_ratio, num_heads, post_norm, False, | |
activation, attn_dropout, proj_dropout, norm_eps) | |
for _ in range(num_layers) | |
]) | |
self.post_norm = LayerNorm(dim, eps=norm_eps) | |
# head | |
if pool_type == 'token': | |
self.head = nn.Parameter(gain * torch.randn(dim, out_dim)) | |
elif pool_type == 'token_fc': | |
self.head = nn.Linear(dim, out_dim) | |
elif pool_type == 'attn_pool': | |
self.head = AttentionPool(dim, mlp_ratio, num_heads, activation, | |
proj_dropout, norm_eps) | |
def forward(self, x, interpolation=False, use_31_block=False): | |
b = x.size(0) | |
# embeddings | |
x = self.patch_embedding(x).flatten(2).permute(0, 2, 1) | |
if self.pool_type in ('token', 'token_fc'): | |
x = torch.cat([self.cls_embedding.expand(b, -1, -1).to(dtype=x.dtype, device=x.device), x], dim=1) | |
if interpolation: | |
e = pos_interpolate(self.pos_embedding, x.size(1)) | |
else: | |
e = self.pos_embedding | |
e = e.to(dtype=x.dtype, device=x.device) | |
x = self.dropout(x + e) | |
if self.pre_norm is not None: | |
x = self.pre_norm(x) | |
# transformer | |
if use_31_block: | |
x = self.transformer[:-1](x) | |
return x | |
else: | |
x = self.transformer(x) | |
return x | |
class CLIP(nn.Module): | |
def __init__(self, | |
embed_dim=512, | |
image_size=224, | |
patch_size=16, | |
vision_dim=768, | |
vision_mlp_ratio=4, | |
vision_heads=12, | |
vision_layers=12, | |
vision_pool='token', | |
vision_pre_norm=True, | |
vision_post_norm=False, | |
vocab_size=49408, | |
text_len=77, | |
text_dim=512, | |
text_mlp_ratio=4, | |
text_heads=8, | |
text_layers=12, | |
text_causal=True, | |
text_pool='argmax', | |
text_head_bias=False, | |
logit_bias=None, | |
activation='quick_gelu', | |
attn_dropout=0.0, | |
proj_dropout=0.0, | |
embedding_dropout=0.0, | |
norm_eps=1e-5): | |
super().__init__() | |
self.embed_dim = embed_dim | |
self.image_size = image_size | |
self.patch_size = patch_size | |
self.vision_dim = vision_dim | |
self.vision_mlp_ratio = vision_mlp_ratio | |
self.vision_heads = vision_heads | |
self.vision_layers = vision_layers | |
self.vision_pool = vision_pool | |
self.vision_pre_norm = vision_pre_norm | |
self.vision_post_norm = vision_post_norm | |
self.vocab_size = vocab_size | |
self.text_len = text_len | |
self.text_dim = text_dim | |
self.text_mlp_ratio = text_mlp_ratio | |
self.text_heads = text_heads | |
self.text_layers = text_layers | |
self.text_causal = text_causal | |
self.text_pool = text_pool | |
self.text_head_bias = text_head_bias | |
self.norm_eps = norm_eps | |
# models | |
self.visual = VisionTransformer( | |
image_size=image_size, | |
patch_size=patch_size, | |
dim=vision_dim, | |
mlp_ratio=vision_mlp_ratio, | |
out_dim=embed_dim, | |
num_heads=vision_heads, | |
num_layers=vision_layers, | |
pool_type=vision_pool, | |
pre_norm=vision_pre_norm, | |
post_norm=vision_post_norm, | |
activation=activation, | |
attn_dropout=attn_dropout, | |
proj_dropout=proj_dropout, | |
embedding_dropout=embedding_dropout, | |
norm_eps=norm_eps) | |
self.textual = TextTransformer( | |
vocab_size=vocab_size, | |
text_len=text_len, | |
dim=text_dim, | |
mlp_ratio=text_mlp_ratio, | |
out_dim=embed_dim, | |
num_heads=text_heads, | |
num_layers=text_layers, | |
causal=text_causal, | |
pool_type=text_pool, | |
head_bias=text_head_bias, | |
activation=activation, | |
attn_dropout=attn_dropout, | |
proj_dropout=proj_dropout, | |
embedding_dropout=embedding_dropout, | |
norm_eps=norm_eps) | |
self.log_scale = nn.Parameter(math.log(1 / 0.07) * torch.ones([])) | |
if logit_bias is not None: | |
self.logit_bias = nn.Parameter(logit_bias * torch.ones([])) | |
# initialize weights | |
self.init_weights() | |
def forward(self, imgs, txt_ids): | |
""" | |
imgs: [B, 3, H, W] of torch.float32. | |
- mean: [0.48145466, 0.4578275, 0.40821073] | |
- std: [0.26862954, 0.26130258, 0.27577711] | |
txt_ids: [B, L] of torch.long. Encoded by data.CLIPTokenizer. | |
""" | |
xi = self.visual(imgs) | |
xt = self.textual(txt_ids) | |
return xi, xt | |
def init_weights(self): | |
# embeddings | |
nn.init.normal_(self.textual.token_embedding.weight, std=0.02) | |
nn.init.normal_(self.visual.patch_embedding.weight, std=0.1) | |
# attentions | |
for modality in ['visual', 'textual']: | |
dim = self.vision_dim if modality == 'visual' else self.text_dim | |
transformer = getattr(self, modality).transformer | |
proj_gain = (1.0 / math.sqrt(dim)) * ( | |
1.0 / math.sqrt(2 * len(transformer))) | |
attn_gain = 1.0 / math.sqrt(dim) | |
mlp_gain = 1.0 / math.sqrt(2.0 * dim) | |
for block in transformer: | |
nn.init.normal_(block.attn.to_qkv.weight, std=attn_gain) | |
nn.init.normal_(block.attn.proj.weight, std=proj_gain) | |
nn.init.normal_(block.mlp[0].weight, std=mlp_gain) | |
nn.init.normal_(block.mlp[2].weight, std=proj_gain) | |
def param_groups(self): | |
groups = [{ | |
'params': [ | |
p for n, p in self.named_parameters() | |
if 'norm' in n or n.endswith('bias') | |
], | |
'weight_decay': 0.0 | |
}, { | |
'params': [ | |
p for n, p in self.named_parameters() | |
if not ('norm' in n or n.endswith('bias')) | |
] | |
}] | |
return groups | |
class XLMRobertaWithHead(XLMRoberta): | |
def __init__(self, **kwargs): | |
self.out_dim = kwargs.pop('out_dim') | |
super().__init__(**kwargs) | |
# head | |
mid_dim = (self.dim + self.out_dim) // 2 | |
self.head = nn.Sequential( | |
nn.Linear(self.dim, mid_dim, bias=False), nn.GELU(), | |
nn.Linear(mid_dim, self.out_dim, bias=False)) | |
def forward(self, ids): | |
# xlm-roberta | |
x = super().forward(ids) | |
# average pooling | |
mask = ids.ne(self.pad_id).unsqueeze(-1).to(x) | |
x = (x * mask).sum(dim=1) / mask.sum(dim=1) | |
# head | |
x = self.head(x) | |
return x | |
class XLMRobertaCLIP(nn.Module): | |
def __init__(self, | |
embed_dim=1024, | |
image_size=224, | |
patch_size=14, | |
vision_dim=1280, | |
vision_mlp_ratio=4, | |
vision_heads=16, | |
vision_layers=32, | |
vision_pool='token', | |
vision_pre_norm=True, | |
vision_post_norm=False, | |
activation='gelu', | |
vocab_size=250002, | |
max_text_len=514, | |
type_size=1, | |
pad_id=1, | |
text_dim=1024, | |
text_heads=16, | |
text_layers=24, | |
text_post_norm=True, | |
text_dropout=0.1, | |
attn_dropout=0.0, | |
proj_dropout=0.0, | |
embedding_dropout=0.0, | |
norm_eps=1e-5): | |
super().__init__() | |
self.embed_dim = embed_dim | |
self.image_size = image_size | |
self.patch_size = patch_size | |
self.vision_dim = vision_dim | |
self.vision_mlp_ratio = vision_mlp_ratio | |
self.vision_heads = vision_heads | |
self.vision_layers = vision_layers | |
self.vision_pre_norm = vision_pre_norm | |
self.vision_post_norm = vision_post_norm | |
self.activation = activation | |
self.vocab_size = vocab_size | |
self.max_text_len = max_text_len | |
self.type_size = type_size | |
self.pad_id = pad_id | |
self.text_dim = text_dim | |
self.text_heads = text_heads | |
self.text_layers = text_layers | |
self.text_post_norm = text_post_norm | |
self.norm_eps = norm_eps | |
# models | |
self.visual = VisionTransformer( | |
image_size=image_size, | |
patch_size=patch_size, | |
dim=vision_dim, | |
mlp_ratio=vision_mlp_ratio, | |
out_dim=embed_dim, | |
num_heads=vision_heads, | |
num_layers=vision_layers, | |
pool_type=vision_pool, | |
pre_norm=vision_pre_norm, | |
post_norm=vision_post_norm, | |
activation=activation, | |
attn_dropout=attn_dropout, | |
proj_dropout=proj_dropout, | |
embedding_dropout=embedding_dropout, | |
norm_eps=norm_eps) | |
self.textual = None | |
self.log_scale = nn.Parameter(math.log(1 / 0.07) * torch.ones([])) | |
def forward(self, imgs, txt_ids): | |
""" | |
imgs: [B, 3, H, W] of torch.float32. | |
- mean: [0.48145466, 0.4578275, 0.40821073] | |
- std: [0.26862954, 0.26130258, 0.27577711] | |
txt_ids: [B, L] of torch.long. | |
Encoded by data.CLIPTokenizer. | |
""" | |
xi = self.visual(imgs) | |
xt = self.textual(txt_ids) | |
return xi, xt | |
def param_groups(self): | |
groups = [{ | |
'params': [ | |
p for n, p in self.named_parameters() | |
if 'norm' in n or n.endswith('bias') | |
], | |
'weight_decay': 0.0 | |
}, { | |
'params': [ | |
p for n, p in self.named_parameters() | |
if not ('norm' in n or n.endswith('bias')) | |
] | |
}] | |
return groups | |
def _clip(pretrained=False, | |
pretrained_name=None, | |
model_cls=CLIP, | |
return_transforms=False, | |
return_tokenizer=False, | |
tokenizer_padding='eos', | |
dtype=torch.float32, | |
device='cpu', | |
**kwargs): | |
# init model | |
if pretrained and pretrained_name: | |
from sora import BUCKET, DOWNLOAD_TO_CACHE | |
# init a meta model | |
with torch.device('meta'): | |
model = model_cls(**kwargs) | |
# checkpoint path | |
checkpoint = f'models/clip/{pretrained_name}' | |
if dtype in (torch.float16, torch.bfloat16): | |
suffix = '-' + { | |
torch.float16: 'fp16', | |
torch.bfloat16: 'bf16' | |
}[dtype] | |
if object_exists(BUCKET, f'{checkpoint}{suffix}.pth'): | |
checkpoint = f'{checkpoint}{suffix}' | |
checkpoint += '.pth' | |
# load | |
model.load_state_dict( | |
torch.load(DOWNLOAD_TO_CACHE(checkpoint), map_location=device), | |
assign=True, | |
strict=False) | |
else: | |
# init a model on device | |
with torch.device(device): | |
model = model_cls(**kwargs) | |
# set device | |
output = (model,) | |
# init transforms | |
if return_transforms: | |
# mean and std | |
if 'siglip' in pretrained_name.lower(): | |
mean, std = [0.5, 0.5, 0.5], [0.5, 0.5, 0.5] | |
else: | |
mean = [0.48145466, 0.4578275, 0.40821073] | |
std = [0.26862954, 0.26130258, 0.27577711] | |
# transforms | |
transforms = T.Compose([ | |
T.Resize((model.image_size, model.image_size), | |
interpolation=T.InterpolationMode.BICUBIC), | |
T.ToTensor(), | |
T.Normalize(mean=mean, std=std) | |
]) | |
output += (transforms,) | |
# init tokenizer | |
if return_tokenizer: | |
from sora import data | |
if 'siglip' in pretrained_name.lower(): | |
tokenizer = data.HuggingfaceTokenizer( | |
name=f'timm/{pretrained_name}', | |
seq_len=model.text_len, | |
clean='canonicalize') | |
elif 'xlm' in pretrained_name.lower(): | |
tokenizer = data.HuggingfaceTokenizer( | |
name='xlm-roberta-large', | |
seq_len=model.max_text_len - 2, | |
clean='whitespace') | |
elif 'mba' in pretrained_name.lower(): | |
tokenizer = data.HuggingfaceTokenizer( | |
name='facebook/xlm-roberta-xl', | |
seq_len=model.max_text_len - 2, | |
clean='whitespace') | |
else: | |
tokenizer = data.CLIPTokenizer( | |
seq_len=model.text_len, padding=tokenizer_padding) | |
output += (tokenizer,) | |
return output[0] if len(output) == 1 else output | |
def clip_xlm_roberta_vit_h_14( | |
pretrained=False, | |
pretrained_name='open-clip-xlm-roberta-large-vit-huge-14', | |
**kwargs): | |
cfg = dict( | |
embed_dim=1024, | |
image_size=224, | |
patch_size=14, | |
vision_dim=1280, | |
vision_mlp_ratio=4, | |
vision_heads=16, | |
vision_layers=32, | |
vision_pool='token', | |
activation='gelu', | |
vocab_size=250002, | |
max_text_len=514, | |
type_size=1, | |
pad_id=1, | |
text_dim=1024, | |
text_heads=16, | |
text_layers=24, | |
text_post_norm=True, | |
text_dropout=0.1, | |
attn_dropout=0.0, | |
proj_dropout=0.0, | |
embedding_dropout=0.0) | |
cfg.update(**kwargs) | |
return _clip(pretrained, pretrained_name, XLMRobertaCLIP, **cfg) | |
class WanImageEncoder(torch.nn.Module): | |
def __init__(self): | |
super().__init__() | |
# init model | |
self.model, self.transforms = clip_xlm_roberta_vit_h_14( | |
pretrained=False, | |
return_transforms=True, | |
return_tokenizer=False, | |
dtype=torch.float32, | |
device="cpu") | |
def encode_image(self, videos): | |
# preprocess | |
size = (self.model.image_size,) * 2 | |
videos = torch.cat([ | |
F.interpolate( | |
u, | |
size=size, | |
mode='bicubic', | |
align_corners=False) for u in videos | |
]) | |
videos = self.transforms.transforms[-1](videos.mul_(0.5).add_(0.5)) | |
# forward | |
out = self.model.visual(videos, use_31_block=True) | |
return out | |
def state_dict_converter(): | |
return WanImageEncoderStateDictConverter() | |
class WanImageEncoderStateDictConverter: | |
def __init__(self): | |
pass | |
def from_diffusers(self, state_dict): | |
return state_dict | |
def from_civitai(self, state_dict): | |
state_dict_ = {} | |
for name, param in state_dict.items(): | |
if name.startswith("textual."): | |
continue | |
name = "model." + name | |
state_dict_[name] = param | |
return state_dict_ | |