Spaces:
Running
on
Zero
Running
on
Zero
import os, torch, json, importlib | |
from typing import List | |
from .downloader import download_models, download_customized_models, Preset_model_id, Preset_model_website | |
from ..configs.model_config import model_loader_configs, huggingface_model_loader_configs, patch_model_loader_configs | |
from .utils import load_state_dict, init_weights_on_device, hash_state_dict_keys, split_state_dict_with_prefix | |
def load_model_from_single_file(state_dict, model_names, model_classes, model_resource, torch_dtype, device): | |
loaded_model_names, loaded_models = [], [] | |
for model_name, model_class in zip(model_names, model_classes): | |
print(f" model_name: {model_name} model_class: {model_class.__name__}") | |
state_dict_converter = model_class.state_dict_converter() | |
if model_resource == "civitai": | |
state_dict_results = state_dict_converter.from_civitai(state_dict) | |
elif model_resource == "diffusers": | |
state_dict_results = state_dict_converter.from_diffusers(state_dict) | |
if isinstance(state_dict_results, tuple): | |
model_state_dict, extra_kwargs = state_dict_results | |
print(f" This model is initialized with extra kwargs: {extra_kwargs}") | |
else: | |
model_state_dict, extra_kwargs = state_dict_results, {} | |
torch_dtype = torch.float32 if extra_kwargs.get("upcast_to_float32", False) else torch_dtype | |
with init_weights_on_device(): | |
model = model_class(**extra_kwargs) | |
if hasattr(model, "eval"): | |
model = model.eval() | |
model.load_state_dict(model_state_dict, assign=True) | |
model = model.to(dtype=torch_dtype, device=device) | |
loaded_model_names.append(model_name) | |
loaded_models.append(model) | |
return loaded_model_names, loaded_models | |
def load_model_from_huggingface_folder(file_path, model_names, model_classes, torch_dtype, device): | |
loaded_model_names, loaded_models = [], [] | |
for model_name, model_class in zip(model_names, model_classes): | |
if torch_dtype in [torch.float32, torch.float16, torch.bfloat16]: | |
model = model_class.from_pretrained(file_path, torch_dtype=torch_dtype).eval() | |
else: | |
model = model_class.from_pretrained(file_path).eval().to(dtype=torch_dtype) | |
if torch_dtype == torch.float16 and hasattr(model, "half"): | |
model = model.half() | |
try: | |
model = model.to(device=device) | |
except: | |
pass | |
loaded_model_names.append(model_name) | |
loaded_models.append(model) | |
return loaded_model_names, loaded_models | |
def load_single_patch_model_from_single_file(state_dict, model_name, model_class, base_model, extra_kwargs, torch_dtype, device): | |
print(f" model_name: {model_name} model_class: {model_class.__name__} extra_kwargs: {extra_kwargs}") | |
base_state_dict = base_model.state_dict() | |
base_model.to("cpu") | |
del base_model | |
model = model_class(**extra_kwargs) | |
model.load_state_dict(base_state_dict, strict=False) | |
model.load_state_dict(state_dict, strict=False) | |
model.to(dtype=torch_dtype, device=device) | |
return model | |
def load_patch_model_from_single_file(state_dict, model_names, model_classes, extra_kwargs, model_manager, torch_dtype, device): | |
loaded_model_names, loaded_models = [], [] | |
for model_name, model_class in zip(model_names, model_classes): | |
while True: | |
for model_id in range(len(model_manager.model)): | |
base_model_name = model_manager.model_name[model_id] | |
if base_model_name == model_name: | |
base_model_path = model_manager.model_path[model_id] | |
base_model = model_manager.model[model_id] | |
print(f" Adding patch model to {base_model_name} ({base_model_path})") | |
patched_model = load_single_patch_model_from_single_file( | |
state_dict, model_name, model_class, base_model, extra_kwargs, torch_dtype, device) | |
loaded_model_names.append(base_model_name) | |
loaded_models.append(patched_model) | |
model_manager.model.pop(model_id) | |
model_manager.model_path.pop(model_id) | |
model_manager.model_name.pop(model_id) | |
break | |
else: | |
break | |
return loaded_model_names, loaded_models | |
class ModelDetectorTemplate: | |
def __init__(self): | |
pass | |
def match(self, file_path="", state_dict={}): | |
return False | |
def load(self, file_path="", state_dict={}, device="cuda", torch_dtype=torch.float16, **kwargs): | |
return [], [] | |
class ModelDetectorFromSingleFile: | |
def __init__(self, model_loader_configs=[]): | |
self.keys_hash_with_shape_dict = {} | |
self.keys_hash_dict = {} | |
for metadata in model_loader_configs: | |
self.add_model_metadata(*metadata) | |
def add_model_metadata(self, keys_hash, keys_hash_with_shape, model_names, model_classes, model_resource): | |
self.keys_hash_with_shape_dict[keys_hash_with_shape] = (model_names, model_classes, model_resource) | |
if keys_hash is not None: | |
self.keys_hash_dict[keys_hash] = (model_names, model_classes, model_resource) | |
def match(self, file_path="", state_dict={}): | |
if isinstance(file_path, str) and os.path.isdir(file_path): | |
return False | |
if len(state_dict) == 0: | |
state_dict = load_state_dict(file_path) | |
keys_hash_with_shape = hash_state_dict_keys(state_dict, with_shape=True) | |
if keys_hash_with_shape in self.keys_hash_with_shape_dict: | |
return True | |
keys_hash = hash_state_dict_keys(state_dict, with_shape=False) | |
if keys_hash in self.keys_hash_dict: | |
return True | |
return False | |
def load(self, file_path="", state_dict={}, device="cuda", torch_dtype=torch.float16, **kwargs): | |
if len(state_dict) == 0: | |
state_dict = load_state_dict(file_path) | |
# Load models with strict matching | |
keys_hash_with_shape = hash_state_dict_keys(state_dict, with_shape=True) | |
if keys_hash_with_shape in self.keys_hash_with_shape_dict: | |
model_names, model_classes, model_resource = self.keys_hash_with_shape_dict[keys_hash_with_shape] | |
loaded_model_names, loaded_models = load_model_from_single_file(state_dict, model_names, model_classes, model_resource, torch_dtype, device) | |
return loaded_model_names, loaded_models | |
# Load models without strict matching | |
# (the shape of parameters may be inconsistent, and the state_dict_converter will modify the model architecture) | |
keys_hash = hash_state_dict_keys(state_dict, with_shape=False) | |
if keys_hash in self.keys_hash_dict: | |
model_names, model_classes, model_resource = self.keys_hash_dict[keys_hash] | |
loaded_model_names, loaded_models = load_model_from_single_file(state_dict, model_names, model_classes, model_resource, torch_dtype, device) | |
return loaded_model_names, loaded_models | |
return loaded_model_names, loaded_models | |
class ModelDetectorFromSplitedSingleFile(ModelDetectorFromSingleFile): | |
def __init__(self, model_loader_configs=[]): | |
super().__init__(model_loader_configs) | |
def match(self, file_path="", state_dict={}): | |
if isinstance(file_path, str) and os.path.isdir(file_path): | |
return False | |
if len(state_dict) == 0: | |
state_dict = load_state_dict(file_path) | |
splited_state_dict = split_state_dict_with_prefix(state_dict) | |
for sub_state_dict in splited_state_dict: | |
if super().match(file_path, sub_state_dict): | |
return True | |
return False | |
def load(self, file_path="", state_dict={}, device="cuda", torch_dtype=torch.float16, **kwargs): | |
# Split the state_dict and load from each component | |
splited_state_dict = split_state_dict_with_prefix(state_dict) | |
valid_state_dict = {} | |
for sub_state_dict in splited_state_dict: | |
if super().match(file_path, sub_state_dict): | |
valid_state_dict.update(sub_state_dict) | |
if super().match(file_path, valid_state_dict): | |
loaded_model_names, loaded_models = super().load(file_path, valid_state_dict, device, torch_dtype) | |
else: | |
loaded_model_names, loaded_models = [], [] | |
for sub_state_dict in splited_state_dict: | |
if super().match(file_path, sub_state_dict): | |
loaded_model_names_, loaded_models_ = super().load(file_path, valid_state_dict, device, torch_dtype) | |
loaded_model_names += loaded_model_names_ | |
loaded_models += loaded_models_ | |
return loaded_model_names, loaded_models | |
class ModelDetectorFromHuggingfaceFolder: | |
def __init__(self, model_loader_configs=[]): | |
self.architecture_dict = {} | |
for metadata in model_loader_configs: | |
self.add_model_metadata(*metadata) | |
def add_model_metadata(self, architecture, huggingface_lib, model_name, redirected_architecture): | |
self.architecture_dict[architecture] = (huggingface_lib, model_name, redirected_architecture) | |
def match(self, file_path="", state_dict={}): | |
if not isinstance(file_path, str) or os.path.isfile(file_path): | |
return False | |
file_list = os.listdir(file_path) | |
if "config.json" not in file_list: | |
return False | |
with open(os.path.join(file_path, "config.json"), "r") as f: | |
config = json.load(f) | |
if "architectures" not in config and "_class_name" not in config: | |
return False | |
return True | |
def load(self, file_path="", state_dict={}, device="cuda", torch_dtype=torch.float16, **kwargs): | |
with open(os.path.join(file_path, "config.json"), "r") as f: | |
config = json.load(f) | |
loaded_model_names, loaded_models = [], [] | |
architectures = config["architectures"] if "architectures" in config else [config["_class_name"]] | |
for architecture in architectures: | |
huggingface_lib, model_name, redirected_architecture = self.architecture_dict[architecture] | |
if redirected_architecture is not None: | |
architecture = redirected_architecture | |
model_class = importlib.import_module(huggingface_lib).__getattribute__(architecture) | |
loaded_model_names_, loaded_models_ = load_model_from_huggingface_folder(file_path, [model_name], [model_class], torch_dtype, device) | |
loaded_model_names += loaded_model_names_ | |
loaded_models += loaded_models_ | |
return loaded_model_names, loaded_models | |
class ModelDetectorFromPatchedSingleFile: | |
def __init__(self, model_loader_configs=[]): | |
self.keys_hash_with_shape_dict = {} | |
for metadata in model_loader_configs: | |
self.add_model_metadata(*metadata) | |
def add_model_metadata(self, keys_hash_with_shape, model_name, model_class, extra_kwargs): | |
self.keys_hash_with_shape_dict[keys_hash_with_shape] = (model_name, model_class, extra_kwargs) | |
def match(self, file_path="", state_dict={}): | |
if not isinstance(file_path, str) or os.path.isdir(file_path): | |
return False | |
if len(state_dict) == 0: | |
state_dict = load_state_dict(file_path) | |
keys_hash_with_shape = hash_state_dict_keys(state_dict, with_shape=True) | |
if keys_hash_with_shape in self.keys_hash_with_shape_dict: | |
return True | |
return False | |
def load(self, file_path="", state_dict={}, device="cuda", torch_dtype=torch.float16, model_manager=None, **kwargs): | |
if len(state_dict) == 0: | |
state_dict = load_state_dict(file_path) | |
# Load models with strict matching | |
loaded_model_names, loaded_models = [], [] | |
keys_hash_with_shape = hash_state_dict_keys(state_dict, with_shape=True) | |
if keys_hash_with_shape in self.keys_hash_with_shape_dict: | |
model_names, model_classes, extra_kwargs = self.keys_hash_with_shape_dict[keys_hash_with_shape] | |
loaded_model_names_, loaded_models_ = load_patch_model_from_single_file( | |
state_dict, model_names, model_classes, extra_kwargs, model_manager, torch_dtype, device) | |
loaded_model_names += loaded_model_names_ | |
loaded_models += loaded_models_ | |
return loaded_model_names, loaded_models | |
class ModelManager: | |
def __init__( | |
self, | |
torch_dtype=torch.float16, | |
device="cuda", | |
model_id_list: List[Preset_model_id] = [], | |
downloading_priority: List[Preset_model_website] = ["ModelScope", "HuggingFace"], | |
file_path_list: List[str] = [], | |
): | |
self.torch_dtype = torch_dtype | |
self.device = device | |
self.model = [] | |
self.model_path = [] | |
self.model_name = [] | |
downloaded_files = download_models(model_id_list, downloading_priority) if len(model_id_list) > 0 else [] | |
self.model_detector = [ | |
ModelDetectorFromSingleFile(model_loader_configs), | |
ModelDetectorFromSplitedSingleFile(model_loader_configs), | |
ModelDetectorFromHuggingfaceFolder(huggingface_model_loader_configs), | |
ModelDetectorFromPatchedSingleFile(patch_model_loader_configs), | |
] | |
self.load_models(downloaded_files + file_path_list) | |
def load_model_from_single_file(self, file_path="", state_dict={}, model_names=[], model_classes=[], model_resource=None): | |
print(f"Loading models from file: {file_path}") | |
if len(state_dict) == 0: | |
state_dict = load_state_dict(file_path) | |
model_names, models = load_model_from_single_file(state_dict, model_names, model_classes, model_resource, self.torch_dtype, self.device) | |
for model_name, model in zip(model_names, models): | |
self.model.append(model) | |
self.model_path.append(file_path) | |
self.model_name.append(model_name) | |
print(f" The following models are loaded: {model_names}.") | |
def load_model_from_huggingface_folder(self, file_path="", model_names=[], model_classes=[]): | |
print(f"Loading models from folder: {file_path}") | |
model_names, models = load_model_from_huggingface_folder(file_path, model_names, model_classes, self.torch_dtype, self.device) | |
for model_name, model in zip(model_names, models): | |
self.model.append(model) | |
self.model_path.append(file_path) | |
self.model_name.append(model_name) | |
print(f" The following models are loaded: {model_names}.") | |
def load_patch_model_from_single_file(self, file_path="", state_dict={}, model_names=[], model_classes=[], extra_kwargs={}): | |
print(f"Loading patch models from file: {file_path}") | |
model_names, models = load_patch_model_from_single_file( | |
state_dict, model_names, model_classes, extra_kwargs, self, self.torch_dtype, self.device) | |
for model_name, model in zip(model_names, models): | |
self.model.append(model) | |
self.model_path.append(file_path) | |
self.model_name.append(model_name) | |
print(f" The following patched models are loaded: {model_names}.") | |
def load_lora(self, file_path="", state_dict={}, lora_alpha=1.0): | |
if isinstance(file_path, list): | |
for file_path_ in file_path: | |
self.load_lora(file_path_, state_dict=state_dict, lora_alpha=lora_alpha) | |
else: | |
print(f"Loading LoRA models from file: {file_path}") | |
if len(state_dict) == 0: | |
state_dict = load_state_dict(file_path) | |
for model_name, model, model_path in zip(self.model_name, self.model, self.model_path): | |
for lora in get_lora_loaders(): | |
match_results = lora.match(model, state_dict) | |
if match_results is not None: | |
print(f" Adding LoRA to {model_name} ({model_path}).") | |
lora_prefix, model_resource = match_results | |
lora.load(model, state_dict, lora_prefix, alpha=lora_alpha, model_resource=model_resource) | |
break | |
def load_model(self, file_path, model_names=None, device=None, torch_dtype=None): | |
print(f"Loading models from: {file_path}") | |
if device is None: device = self.device | |
if torch_dtype is None: torch_dtype = self.torch_dtype | |
if isinstance(file_path, list): | |
state_dict = {} | |
for path in file_path: | |
state_dict.update(load_state_dict(path)) | |
elif os.path.isfile(file_path): | |
state_dict = load_state_dict(file_path) | |
else: | |
state_dict = None | |
for model_detector in self.model_detector: | |
if model_detector.match(file_path, state_dict): | |
model_names, models = model_detector.load( | |
file_path, state_dict, | |
device=device, torch_dtype=torch_dtype, | |
allowed_model_names=model_names, model_manager=self | |
) | |
for model_name, model in zip(model_names, models): | |
self.model.append(model) | |
self.model_path.append(file_path) | |
self.model_name.append(model_name) | |
print(f" The following models are loaded: {model_names}.") | |
break | |
else: | |
print(f" We cannot detect the model type. No models are loaded.") | |
def load_models(self, file_path_list, model_names=None, device=None, torch_dtype=None): | |
for file_path in file_path_list: | |
self.load_model(file_path, model_names, device=device, torch_dtype=torch_dtype) | |
def fetch_model(self, model_name, file_path=None, require_model_path=False): | |
fetched_models = [] | |
fetched_model_paths = [] | |
for model, model_path, model_name_ in zip(self.model, self.model_path, self.model_name): | |
if file_path is not None and file_path != model_path: | |
continue | |
if model_name == model_name_: | |
fetched_models.append(model) | |
fetched_model_paths.append(model_path) | |
if len(fetched_models) == 0: | |
print(f"No {model_name} models available.") | |
return None | |
if len(fetched_models) == 1: | |
print(f"Using {model_name} from {fetched_model_paths[0]}.") | |
else: | |
print(f"More than one {model_name} models are loaded in model manager: {fetched_model_paths}. Using {model_name} from {fetched_model_paths[0]}.") | |
if require_model_path: | |
return fetched_models[0], fetched_model_paths[0] | |
else: | |
return fetched_models[0] | |
def to(self, device): | |
for model in self.model: | |
model.to(device) | |