Spaces:
Running
on
Zero
Running
on
Zero
File size: 8,182 Bytes
282b272 3660685 282b272 189ac63 d5c68c9 189ac63 282b272 13128c2 282b272 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 |
import torch
from diffsynth import ModelManager, WanVideoPipeline
from PIL import Image
import argparse
from transformers import Wav2Vec2Processor, Wav2Vec2Model
import librosa
import os
import subprocess
import cv2
from model import FantasyTalkingAudioConditionModel
from utils import save_video, get_audio_features, resize_image_by_longest_edge
from pathlib import Path
from datetime import datetime
# from modelscope import snapshot_download
from huggingface_hub import snapshot_download
def parse_args():
parser = argparse.ArgumentParser(description="Simple example of a training script.")
parser.add_argument(
"--wan_model_dir",
type=str,
default="./models/Wan2.1-I2V-14B-720P",
required=False,
help="The dir of the Wan I2V 14B model.",
)
parser.add_argument(
"--fantasytalking_model_path",
type=str,
default="./models/fantasytalking_model.ckpt",
required=False,
help="The .ckpt path of fantasytalking model.",
)
parser.add_argument(
"--wav2vec_model_dir",
type=str,
default="./models/wav2vec2-base-960h",
required=False,
help="The dir of wav2vec model.",
)
parser.add_argument(
"--image_path",
type=str,
default="./assets/images/woman.png",
required=False,
help="The path of the image.",
)
parser.add_argument(
"--audio_path",
type=str,
default="./assets/audios/woman.wav",
required=False,
help="The path of the audio.",
)
parser.add_argument(
"--prompt",
type=str,
default="A woman is talking.",
required=False,
help="prompt.",
)
parser.add_argument(
"--output_dir",
type=str,
default="./output",
help="Dir to save the model.",
)
parser.add_argument(
"--image_size",
type=int,
default=512,
help="The image will be resized proportionally to this size.",
)
parser.add_argument(
"--audio_scale",
type=float,
default=1.0,
help="Audio condition injection weight",
)
parser.add_argument(
"--prompt_cfg_scale",
type=float,
default=5.0,
required=False,
help="Prompt cfg scale",
)
parser.add_argument(
"--audio_cfg_scale",
type=float,
default=5.0,
required=False,
help="Audio cfg scale",
)
parser.add_argument(
"--max_num_frames",
type=int,
default=81,
required=False,
help="The maximum frames for generating videos, the audio part exceeding max_num_frames/fps will be truncated."
)
parser.add_argument(
"--fps",
type=int,
default=23,
required=False,
)
parser.add_argument(
"--num_persistent_param_in_dit",
type=int,
default=None,
required=False,
help="Maximum parameter quantity retained in video memory, small number to reduce VRAM required"
)
parser.add_argument(
"--seed",
type=int,
default=1111,
required=False,
)
args = parser.parse_args()
return args
def load_models(args):
# Load Wan I2V models
snapshot_download("Wan-AI/Wan2.1-I2V-14B-720P", local_dir="./models/Wan2.1-I2V-14B-720P")
snapshot_download("facebook/wav2vec2-base-960h", local_dir="./models/wav2vec2-base-960h")
snapshot_download("acvlab/FantasyTalking", local_dir="./models")
model_manager = ModelManager(device="cpu")
model_manager.load_models(
[
[
f"{args.wan_model_dir}/diffusion_pytorch_model-00001-of-00007.safetensors",
f"{args.wan_model_dir}/diffusion_pytorch_model-00002-of-00007.safetensors",
f"{args.wan_model_dir}/diffusion_pytorch_model-00003-of-00007.safetensors",
f"{args.wan_model_dir}/diffusion_pytorch_model-00004-of-00007.safetensors",
f"{args.wan_model_dir}/diffusion_pytorch_model-00005-of-00007.safetensors",
f"{args.wan_model_dir}/diffusion_pytorch_model-00006-of-00007.safetensors",
f"{args.wan_model_dir}/diffusion_pytorch_model-00007-of-00007.safetensors",
],
f"{args.wan_model_dir}/models_clip_open-clip-xlm-roberta-large-vit-huge-14.pth",
f"{args.wan_model_dir}/models_t5_umt5-xxl-enc-bf16.pth",
f"{args.wan_model_dir}/Wan2.1_VAE.pth",
],
# torch_dtype=torch.float8_e4m3fn, # You can set `torch_dtype=torch.bfloat16` to disable FP8 quantization.
torch_dtype=torch.bfloat16, # You can set `torch_dtype=torch.bfloat16` to disable FP8 quantization.
)
pipe = WanVideoPipeline.from_model_manager(model_manager, torch_dtype=torch.bfloat16, device="cuda")
# Load FantasyTalking weights
fantasytalking = FantasyTalkingAudioConditionModel(pipe.dit, 768, 2048).to("cuda")
fantasytalking.load_audio_processor(args.fantasytalking_model_path, pipe.dit)
# You can set `num_persistent_param_in_dit` to a small number to reduce VRAM required.
pipe.enable_vram_management(num_persistent_param_in_dit=args.num_persistent_param_in_dit)
# Load wav2vec models
wav2vec_processor = Wav2Vec2Processor.from_pretrained(args.wav2vec_model_dir)
wav2vec = Wav2Vec2Model.from_pretrained(args.wav2vec_model_dir).to("cuda")
return pipe,fantasytalking,wav2vec_processor,wav2vec
def main(args,pipe,fantasytalking,wav2vec_processor,wav2vec):
os.makedirs(args.output_dir,exist_ok=True)
duration = librosa.get_duration(filename=args.audio_path)
num_frames = min(int(args.fps*duration//4)*4+5,args.max_num_frames)
audio_wav2vec_fea = get_audio_features(wav2vec,wav2vec_processor,args.audio_path,args.fps,num_frames)
image = resize_image_by_longest_edge(args.image_path,args.image_size)
width, height = image.size
audio_proj_fea = fantasytalking.get_proj_fea(audio_wav2vec_fea)
pos_idx_ranges = fantasytalking.split_audio_sequence(audio_proj_fea.size(1),num_frames=num_frames)
audio_proj_split,audio_context_lens = fantasytalking.split_tensor_with_padding(audio_proj_fea,pos_idx_ranges,expand_length=4) # [b,21,9+8,768]
# Image-to-video
video_audio = pipe(
prompt=args.prompt,
negative_prompt="人物静止不动,静止,色调艳丽,过曝,静态,细节模糊不清,字幕,风格,作品,画作,画面,静止,整体发灰,最差质量,低质量,JPEG压缩残留,丑陋的,残缺的,多余的手指,画得不好的手部,画得不好的脸部,畸形的,毁容的,形态畸形的肢体,手指融合,静止不动的画面,杂乱的背景,三条腿,背景人很多,倒着走",
input_image=image,
width=width,
height=height,
num_frames=num_frames,
num_inference_steps=30,
seed=args.seed, tiled=True,
audio_scale=args.audio_scale,
cfg_scale = args.prompt_cfg_scale,
audio_cfg_scale=args.audio_cfg_scale,
audio_proj=audio_proj_split,
audio_context_lens=audio_context_lens,
latents_num_frames=(num_frames-1)//4+1
)
current_time = datetime.now().strftime("%Y%m%d_%H%M%S")
save_path_tmp = f"{args.output_dir}/tmp_{Path(args.image_path).stem}_{Path(args.audio_path).stem}_{current_time}.mp4"
save_video(video_audio, save_path_tmp, fps=args.fps, quality=5)
save_path = f"{args.output_dir}/{Path(args.image_path).stem}_{Path(args.audio_path).stem}_{current_time}.mp4"
final_command = [
"ffmpeg", "-y",
"-i", save_path_tmp,
"-i", args.audio_path,
"-c:v", "libx264",
"-c:a", "aac",
"-shortest",
save_path
]
subprocess.run(final_command, check=True)
os.remove(save_path_tmp)
return save_path
if __name__ == "__main__":
args = parse_args()
pipe,fantasytalking,wav2vec_processor,wav2vec = load_models(args)
main(args,pipe,fantasytalking,wav2vec_processor,wav2vec)
|