File size: 8,182 Bytes
282b272
 
 
 
 
 
 
 
 
 
 
 
 
3660685
 
282b272
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
189ac63
d5c68c9
 
 
189ac63
 
282b272
13128c2
282b272
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
import torch
from diffsynth import ModelManager, WanVideoPipeline
from PIL import Image
import argparse
from transformers import Wav2Vec2Processor, Wav2Vec2Model
import librosa
import os
import subprocess
import cv2
from model import FantasyTalkingAudioConditionModel
from utils import save_video, get_audio_features, resize_image_by_longest_edge
from pathlib import Path
from datetime import datetime
# from modelscope import snapshot_download
from huggingface_hub import snapshot_download

def parse_args():
    parser = argparse.ArgumentParser(description="Simple example of a training script.")
    
    parser.add_argument(
        "--wan_model_dir",
        type=str,
        default="./models/Wan2.1-I2V-14B-720P",
        required=False,
        help="The dir of the Wan I2V 14B model.",
    )
    parser.add_argument(
        "--fantasytalking_model_path",
        type=str,
        default="./models/fantasytalking_model.ckpt",
        required=False,
        help="The .ckpt path of fantasytalking model.",
    )
    parser.add_argument(
        "--wav2vec_model_dir",
        type=str,
        default="./models/wav2vec2-base-960h",
        required=False,
        help="The dir of wav2vec model.",
    )

    parser.add_argument(
        "--image_path",
        type=str,
        default="./assets/images/woman.png",
        required=False,
        help="The path of the image.",
    )

    parser.add_argument(
        "--audio_path",
        type=str,
        default="./assets/audios/woman.wav",
        required=False,
        help="The path of the audio.",
    )
    parser.add_argument(
        "--prompt",
        type=str,
        default="A woman is talking.",
        required=False,
        help="prompt.",
    )
    parser.add_argument(
        "--output_dir",
        type=str,
        default="./output",
        help="Dir to save the model.",
    )
    parser.add_argument(
        "--image_size",
        type=int,
        default=512,
        help="The image will be resized proportionally to this size.",
    )
    parser.add_argument(
        "--audio_scale",
        type=float,
        default=1.0,
        help="Audio condition injection weight",
    )
    parser.add_argument(
        "--prompt_cfg_scale",
        type=float,
        default=5.0,
        required=False,
        help="Prompt cfg scale",
    )
    parser.add_argument(
        "--audio_cfg_scale",
        type=float,
        default=5.0,
        required=False,
        help="Audio cfg scale",
    )
    parser.add_argument(
        "--max_num_frames",
        type=int,
        default=81,
        required=False,
        help="The maximum frames for generating videos, the audio part exceeding max_num_frames/fps will be truncated."
    )
    parser.add_argument(
        "--fps",
        type=int,
        default=23,
        required=False,
    )
    parser.add_argument(
        "--num_persistent_param_in_dit",
        type=int,
        default=None,
        required=False,
        help="Maximum parameter quantity retained in video memory, small number to reduce VRAM required"
    )
    parser.add_argument(
        "--seed",
        type=int,
        default=1111,
        required=False,
    )
    args = parser.parse_args()
    return args

def load_models(args):
    # Load Wan I2V models

    snapshot_download("Wan-AI/Wan2.1-I2V-14B-720P", local_dir="./models/Wan2.1-I2V-14B-720P")
    snapshot_download("facebook/wav2vec2-base-960h", local_dir="./models/wav2vec2-base-960h")
    snapshot_download("acvlab/FantasyTalking", local_dir="./models")


    model_manager = ModelManager(device="cpu")
    
    model_manager.load_models(
        [
            [
                f"{args.wan_model_dir}/diffusion_pytorch_model-00001-of-00007.safetensors",
                f"{args.wan_model_dir}/diffusion_pytorch_model-00002-of-00007.safetensors",
                f"{args.wan_model_dir}/diffusion_pytorch_model-00003-of-00007.safetensors",
                f"{args.wan_model_dir}/diffusion_pytorch_model-00004-of-00007.safetensors",
                f"{args.wan_model_dir}/diffusion_pytorch_model-00005-of-00007.safetensors",
                f"{args.wan_model_dir}/diffusion_pytorch_model-00006-of-00007.safetensors",
                f"{args.wan_model_dir}/diffusion_pytorch_model-00007-of-00007.safetensors",
            ],
            f"{args.wan_model_dir}/models_clip_open-clip-xlm-roberta-large-vit-huge-14.pth",
            f"{args.wan_model_dir}/models_t5_umt5-xxl-enc-bf16.pth",
            f"{args.wan_model_dir}/Wan2.1_VAE.pth",
        ],
        # torch_dtype=torch.float8_e4m3fn, # You can set `torch_dtype=torch.bfloat16` to disable FP8 quantization.
        torch_dtype=torch.bfloat16, # You can set `torch_dtype=torch.bfloat16` to disable FP8 quantization.
    )
    pipe = WanVideoPipeline.from_model_manager(model_manager, torch_dtype=torch.bfloat16, device="cuda")

    # Load FantasyTalking weights
    fantasytalking = FantasyTalkingAudioConditionModel(pipe.dit, 768, 2048).to("cuda")
    fantasytalking.load_audio_processor(args.fantasytalking_model_path, pipe.dit)
    
    # You can set `num_persistent_param_in_dit` to a small number to reduce VRAM required.
    pipe.enable_vram_management(num_persistent_param_in_dit=args.num_persistent_param_in_dit)

    # Load wav2vec models
    wav2vec_processor = Wav2Vec2Processor.from_pretrained(args.wav2vec_model_dir)
    wav2vec = Wav2Vec2Model.from_pretrained(args.wav2vec_model_dir).to("cuda")

    return pipe,fantasytalking,wav2vec_processor,wav2vec



def main(args,pipe,fantasytalking,wav2vec_processor,wav2vec):
    os.makedirs(args.output_dir,exist_ok=True)

    duration = librosa.get_duration(filename=args.audio_path)
    num_frames = min(int(args.fps*duration//4)*4+5,args.max_num_frames)

    audio_wav2vec_fea = get_audio_features(wav2vec,wav2vec_processor,args.audio_path,args.fps,num_frames)
    image = resize_image_by_longest_edge(args.image_path,args.image_size)
    width, height = image.size

    audio_proj_fea = fantasytalking.get_proj_fea(audio_wav2vec_fea)
    pos_idx_ranges = fantasytalking.split_audio_sequence(audio_proj_fea.size(1),num_frames=num_frames)
    audio_proj_split,audio_context_lens = fantasytalking.split_tensor_with_padding(audio_proj_fea,pos_idx_ranges,expand_length=4) # [b,21,9+8,768]

    # Image-to-video
    video_audio = pipe(
        prompt=args.prompt,
        negative_prompt="人物静止不动,静止,色调艳丽,过曝,静态,细节模糊不清,字幕,风格,作品,画作,画面,静止,整体发灰,最差质量,低质量,JPEG压缩残留,丑陋的,残缺的,多余的手指,画得不好的手部,画得不好的脸部,畸形的,毁容的,形态畸形的肢体,手指融合,静止不动的画面,杂乱的背景,三条腿,背景人很多,倒着走",
        input_image=image,
        width=width,
        height=height,
        num_frames=num_frames,
        num_inference_steps=30,
        seed=args.seed, tiled=True,
        audio_scale=args.audio_scale,
        cfg_scale = args.prompt_cfg_scale,
        audio_cfg_scale=args.audio_cfg_scale,
        audio_proj=audio_proj_split,
        audio_context_lens=audio_context_lens,
        latents_num_frames=(num_frames-1)//4+1
    )
    current_time = datetime.now().strftime("%Y%m%d_%H%M%S")
    save_path_tmp = f"{args.output_dir}/tmp_{Path(args.image_path).stem}_{Path(args.audio_path).stem}_{current_time}.mp4"
    save_video(video_audio, save_path_tmp, fps=args.fps, quality=5)
    
    save_path = f"{args.output_dir}/{Path(args.image_path).stem}_{Path(args.audio_path).stem}_{current_time}.mp4"
    final_command = [
        "ffmpeg", "-y",
        "-i", save_path_tmp,       
        "-i", args.audio_path, 
        "-c:v", "libx264",        
        "-c:a", "aac",           
        "-shortest",             
        save_path              
    ]
    subprocess.run(final_command, check=True)
    os.remove(save_path_tmp)
    return save_path

if __name__ == "__main__":
    args = parse_args()
    pipe,fantasytalking,wav2vec_processor,wav2vec = load_models(args)

    main(args,pipe,fantasytalking,wav2vec_processor,wav2vec)