File size: 4,746 Bytes
282b272
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
import torch, copy
from ..models.utils import init_weights_on_device


def cast_to(weight, dtype, device):
    r = torch.empty_like(weight, dtype=dtype, device=device)
    r.copy_(weight)
    return r


class AutoWrappedModule(torch.nn.Module):
    def __init__(self, module: torch.nn.Module, offload_dtype, offload_device, onload_dtype, onload_device, computation_dtype, computation_device):
        super().__init__()
        self.module = module.to(dtype=offload_dtype, device=offload_device)
        self.offload_dtype = offload_dtype
        self.offload_device = offload_device
        self.onload_dtype = onload_dtype
        self.onload_device = onload_device
        self.computation_dtype = computation_dtype
        self.computation_device = computation_device
        self.state = 0

    def offload(self):
        if self.state == 1 and (self.offload_dtype != self.onload_dtype or self.offload_device != self.onload_device):
            self.module.to(dtype=self.offload_dtype, device=self.offload_device)
            self.state = 0

    def onload(self):
        if self.state == 0 and (self.offload_dtype != self.onload_dtype or self.offload_device != self.onload_device):
            self.module.to(dtype=self.onload_dtype, device=self.onload_device)
            self.state = 1

    def forward(self, *args, **kwargs):
        if self.onload_dtype == self.computation_dtype and self.onload_device == self.computation_device:
            module = self.module
        else:
            module = copy.deepcopy(self.module).to(dtype=self.computation_dtype, device=self.computation_device)
        return module(*args, **kwargs)
    

class AutoWrappedLinear(torch.nn.Linear):
    def __init__(self, module: torch.nn.Linear, offload_dtype, offload_device, onload_dtype, onload_device, computation_dtype, computation_device):
        with init_weights_on_device(device=torch.device("meta")):
            super().__init__(in_features=module.in_features, out_features=module.out_features, bias=module.bias is not None, dtype=offload_dtype, device=offload_device)
        self.weight = module.weight
        self.bias = module.bias
        self.offload_dtype = offload_dtype
        self.offload_device = offload_device
        self.onload_dtype = onload_dtype
        self.onload_device = onload_device
        self.computation_dtype = computation_dtype
        self.computation_device = computation_device
        self.state = 0

    def offload(self):
        if self.state == 1 and (self.offload_dtype != self.onload_dtype or self.offload_device != self.onload_device):
            self.to(dtype=self.offload_dtype, device=self.offload_device)
            self.state = 0

    def onload(self):
        if self.state == 0 and (self.offload_dtype != self.onload_dtype or self.offload_device != self.onload_device):
            self.to(dtype=self.onload_dtype, device=self.onload_device)
            self.state = 1

    def forward(self, x, *args, **kwargs):
        if self.onload_dtype == self.computation_dtype and self.onload_device == self.computation_device:
            weight, bias = self.weight, self.bias
        else:
            weight = cast_to(self.weight, self.computation_dtype, self.computation_device)
            bias = None if self.bias is None else cast_to(self.bias, self.computation_dtype, self.computation_device)
        return torch.nn.functional.linear(x, weight, bias)


def enable_vram_management_recursively(model: torch.nn.Module, module_map: dict, module_config: dict, max_num_param=None, overflow_module_config: dict = None, total_num_param=0):
    for name, module in model.named_children():
        for source_module, target_module in module_map.items():
            if isinstance(module, source_module):
                num_param = sum(p.numel() for p in module.parameters())
                if max_num_param is not None and total_num_param + num_param > max_num_param:
                    module_config_ = overflow_module_config
                else:
                    module_config_ = module_config
                module_ = target_module(module, **module_config_)
                setattr(model, name, module_)
                total_num_param += num_param
                break
        else:
            total_num_param = enable_vram_management_recursively(module, module_map, module_config, max_num_param, overflow_module_config, total_num_param)
    return total_num_param


def enable_vram_management(model: torch.nn.Module, module_map: dict, module_config: dict, max_num_param=None, overflow_module_config: dict = None):
    enable_vram_management_recursively(model, module_map, module_config, max_num_param, overflow_module_config, total_num_param=0)
    model.vram_management_enabled = True