Spaces:
Running
on
Zero
Running
on
Zero
File size: 7,093 Bytes
3570591 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 |
import torch, os
from safetensors import safe_open
from contextlib import contextmanager
import hashlib
@contextmanager
def init_weights_on_device(device = torch.device("meta"), include_buffers :bool = False):
old_register_parameter = torch.nn.Module.register_parameter
if include_buffers:
old_register_buffer = torch.nn.Module.register_buffer
def register_empty_parameter(module, name, param):
old_register_parameter(module, name, param)
if param is not None:
param_cls = type(module._parameters[name])
kwargs = module._parameters[name].__dict__
kwargs["requires_grad"] = param.requires_grad
module._parameters[name] = param_cls(module._parameters[name].to(device), **kwargs)
def register_empty_buffer(module, name, buffer, persistent=True):
old_register_buffer(module, name, buffer, persistent=persistent)
if buffer is not None:
module._buffers[name] = module._buffers[name].to(device)
def patch_tensor_constructor(fn):
def wrapper(*args, **kwargs):
kwargs["device"] = device
return fn(*args, **kwargs)
return wrapper
if include_buffers:
tensor_constructors_to_patch = {
torch_function_name: getattr(torch, torch_function_name)
for torch_function_name in ["empty", "zeros", "ones", "full"]
}
else:
tensor_constructors_to_patch = {}
try:
torch.nn.Module.register_parameter = register_empty_parameter
if include_buffers:
torch.nn.Module.register_buffer = register_empty_buffer
for torch_function_name in tensor_constructors_to_patch.keys():
setattr(torch, torch_function_name, patch_tensor_constructor(getattr(torch, torch_function_name)))
yield
finally:
torch.nn.Module.register_parameter = old_register_parameter
if include_buffers:
torch.nn.Module.register_buffer = old_register_buffer
for torch_function_name, old_torch_function in tensor_constructors_to_patch.items():
setattr(torch, torch_function_name, old_torch_function)
def load_state_dict_from_folder(file_path, torch_dtype=None):
state_dict = {}
for file_name in os.listdir(file_path):
if "." in file_name and file_name.split(".")[-1] in [
"safetensors", "bin", "ckpt", "pth", "pt"
]:
state_dict.update(load_state_dict(os.path.join(file_path, file_name), torch_dtype=torch_dtype))
return state_dict
def load_state_dict(file_path, torch_dtype=None):
if file_path.endswith(".safetensors"):
return load_state_dict_from_safetensors(file_path, torch_dtype=torch_dtype)
else:
return load_state_dict_from_bin(file_path, torch_dtype=torch_dtype)
def load_state_dict_from_safetensors(file_path, torch_dtype=None):
state_dict = {}
with safe_open(file_path, framework="pt", device="cpu") as f:
for k in f.keys():
state_dict[k] = f.get_tensor(k)
if torch_dtype is not None:
state_dict[k] = state_dict[k].to(torch_dtype)
return state_dict
def load_state_dict_from_bin(file_path, torch_dtype=None):
state_dict = torch.load(file_path, map_location="cpu", weights_only=True)
if torch_dtype is not None:
for i in state_dict:
if isinstance(state_dict[i], torch.Tensor):
state_dict[i] = state_dict[i].to(torch_dtype)
return state_dict
def search_for_embeddings(state_dict):
embeddings = []
for k in state_dict:
if isinstance(state_dict[k], torch.Tensor):
embeddings.append(state_dict[k])
elif isinstance(state_dict[k], dict):
embeddings += search_for_embeddings(state_dict[k])
return embeddings
def search_parameter(param, state_dict):
for name, param_ in state_dict.items():
if param.numel() == param_.numel():
if param.shape == param_.shape:
if torch.dist(param, param_) < 1e-3:
return name
else:
if torch.dist(param.flatten(), param_.flatten()) < 1e-3:
return name
return None
def build_rename_dict(source_state_dict, target_state_dict, split_qkv=False):
matched_keys = set()
with torch.no_grad():
for name in source_state_dict:
rename = search_parameter(source_state_dict[name], target_state_dict)
if rename is not None:
print(f'"{name}": "{rename}",')
matched_keys.add(rename)
elif split_qkv and len(source_state_dict[name].shape)>=1 and source_state_dict[name].shape[0]%3==0:
length = source_state_dict[name].shape[0] // 3
rename = []
for i in range(3):
rename.append(search_parameter(source_state_dict[name][i*length: i*length+length], target_state_dict))
if None not in rename:
print(f'"{name}": {rename},')
for rename_ in rename:
matched_keys.add(rename_)
for name in target_state_dict:
if name not in matched_keys:
print("Cannot find", name, target_state_dict[name].shape)
def search_for_files(folder, extensions):
files = []
if os.path.isdir(folder):
for file in sorted(os.listdir(folder)):
files += search_for_files(os.path.join(folder, file), extensions)
elif os.path.isfile(folder):
for extension in extensions:
if folder.endswith(extension):
files.append(folder)
break
return files
def convert_state_dict_keys_to_single_str(state_dict, with_shape=True):
keys = []
for key, value in state_dict.items():
if isinstance(key, str):
if isinstance(value, torch.Tensor):
if with_shape:
shape = "_".join(map(str, list(value.shape)))
keys.append(key + ":" + shape)
keys.append(key)
elif isinstance(value, dict):
keys.append(key + "|" + convert_state_dict_keys_to_single_str(value, with_shape=with_shape))
keys.sort()
keys_str = ",".join(keys)
return keys_str
def split_state_dict_with_prefix(state_dict):
keys = sorted([key for key in state_dict if isinstance(key, str)])
prefix_dict = {}
for key in keys:
prefix = key if "." not in key else key.split(".")[0]
if prefix not in prefix_dict:
prefix_dict[prefix] = []
prefix_dict[prefix].append(key)
state_dicts = []
for prefix, keys in prefix_dict.items():
sub_state_dict = {key: state_dict[key] for key in keys}
state_dicts.append(sub_state_dict)
return state_dicts
def hash_state_dict_keys(state_dict, with_shape=True):
keys_str = convert_state_dict_keys_to_single_str(state_dict, with_shape=with_shape)
keys_str = keys_str.encode(encoding="UTF-8")
return hashlib.md5(keys_str).hexdigest() |