Spaces:
Running
Running
Update app.py
Browse files
app.py
CHANGED
@@ -1,16 +1,19 @@
|
|
1 |
|
|
|
|
|
2 |
from PIL import Image
|
3 |
from RealESRGAN import RealESRGAN
|
4 |
import gradio as gr
|
5 |
import numpy as np
|
6 |
import tempfile
|
7 |
import time
|
8 |
-
import zipfile
|
9 |
import os
|
|
|
10 |
|
11 |
-
#
|
12 |
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
|
13 |
|
|
|
14 |
def load_model(scale):
|
15 |
model = RealESRGAN(device, scale=scale)
|
16 |
weights_path = f'weights/RealESRGAN_x{scale}.pth'
|
@@ -27,6 +30,10 @@ model2 = load_model(2)
|
|
27 |
model4 = load_model(4)
|
28 |
model8 = load_model(8)
|
29 |
|
|
|
|
|
|
|
|
|
30 |
def enhance_image(image, scale):
|
31 |
try:
|
32 |
print(f"Enhancing image with scale {scale}...")
|
@@ -48,6 +55,18 @@ def enhance_image(image, scale):
|
|
48 |
print(f"Error enhancing image: {e}")
|
49 |
return image
|
50 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
51 |
def muda_dpi(input_image, dpi):
|
52 |
dpi_tuple = (dpi, dpi)
|
53 |
image = Image.fromarray(input_image.astype('uint8'), 'RGB')
|
@@ -56,6 +75,7 @@ def muda_dpi(input_image, dpi):
|
|
56 |
temp_file.close()
|
57 |
return Image.open(temp_file.name)
|
58 |
|
|
|
59 |
def resize_image(input_image, width, height):
|
60 |
image = Image.fromarray(input_image.astype('uint8'), 'RGB')
|
61 |
resized_image = image.resize((width, height))
|
@@ -64,9 +84,11 @@ def resize_image(input_image, width, height):
|
|
64 |
temp_file.close()
|
65 |
return Image.open(temp_file.name)
|
66 |
|
|
|
67 |
def process_images(image_files, enhance, scale, adjust_dpi, dpi, resize, width, height):
|
68 |
processed_images = []
|
69 |
-
|
|
|
70 |
|
71 |
for image_file in image_files:
|
72 |
input_image = np.array(Image.open(image_file).convert('RGB'))
|
@@ -81,23 +103,27 @@ def process_images(image_files, enhance, scale, adjust_dpi, dpi, resize, width,
|
|
81 |
if resize:
|
82 |
original_image = resize_image(np.array(original_image), width, height)
|
83 |
|
84 |
-
#
|
85 |
-
|
86 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
87 |
original_image.save(output_path, format='JPEG')
|
88 |
-
|
89 |
-
|
90 |
-
|
91 |
-
zip_path = os.path.join(temp_dir, 'processed_images.zip')
|
92 |
-
with zipfile.ZipFile(zip_path, 'w') as zipf:
|
93 |
-
for file_path in processed_images:
|
94 |
-
zipf.write(file_path, os.path.basename(file_path))
|
95 |
-
|
96 |
-
# Load images for display in the gallery
|
97 |
-
display_images = [Image.open(img_path) for img_path in processed_images]
|
98 |
|
99 |
-
return
|
100 |
|
|
|
101 |
iface = gr.Interface(
|
102 |
fn=process_images,
|
103 |
inputs=[
|
@@ -111,11 +137,12 @@ iface = gr.Interface(
|
|
111 |
gr.Number(label="Height", value=512)
|
112 |
],
|
113 |
outputs=[
|
114 |
-
gr.Gallery(label="Final Images"), #
|
115 |
-
gr.
|
|
|
116 |
],
|
117 |
-
title="
|
118 |
-
description="Upload multiple images (.jpg, .png), enhance using AI, adjust DPI, resize, and download the final results
|
119 |
)
|
120 |
|
121 |
-
iface.launch(debug=True)
|
|
|
1 |
|
2 |
+
|
3 |
+
import torch
|
4 |
from PIL import Image
|
5 |
from RealESRGAN import RealESRGAN
|
6 |
import gradio as gr
|
7 |
import numpy as np
|
8 |
import tempfile
|
9 |
import time
|
|
|
10 |
import os
|
11 |
+
from transformers import pipeline # For Hugging Face image description generation
|
12 |
|
13 |
+
# Check for GPU availability
|
14 |
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
|
15 |
|
16 |
+
# Load RealESRGAN model with specified scale
|
17 |
def load_model(scale):
|
18 |
model = RealESRGAN(device, scale=scale)
|
19 |
weights_path = f'weights/RealESRGAN_x{scale}.pth'
|
|
|
30 |
model4 = load_model(4)
|
31 |
model8 = load_model(8)
|
32 |
|
33 |
+
# Hugging Face image description pipeline
|
34 |
+
description_generator = pipeline("image-to-text", model="nlpconnect/vit-gpt2-image-captioning")
|
35 |
+
|
36 |
+
# Enhance image based on selected scale
|
37 |
def enhance_image(image, scale):
|
38 |
try:
|
39 |
print(f"Enhancing image with scale {scale}...")
|
|
|
55 |
print(f"Error enhancing image: {e}")
|
56 |
return image
|
57 |
|
58 |
+
# Generate image description using Hugging Face Transformers
|
59 |
+
def generate_description(image):
|
60 |
+
try:
|
61 |
+
print("Generating description for the image...")
|
62 |
+
description = description_generator(image)[0]['generated_text']
|
63 |
+
print(f"Description generated: {description}")
|
64 |
+
return description
|
65 |
+
except Exception as e:
|
66 |
+
print(f"Error generating description: {e}")
|
67 |
+
return "Description unavailable."
|
68 |
+
|
69 |
+
# Adjust DPI of an image
|
70 |
def muda_dpi(input_image, dpi):
|
71 |
dpi_tuple = (dpi, dpi)
|
72 |
image = Image.fromarray(input_image.astype('uint8'), 'RGB')
|
|
|
75 |
temp_file.close()
|
76 |
return Image.open(temp_file.name)
|
77 |
|
78 |
+
# Resize an image to specified dimensions
|
79 |
def resize_image(input_image, width, height):
|
80 |
image = Image.fromarray(input_image.astype('uint8'), 'RGB')
|
81 |
resized_image = image.resize((width, height))
|
|
|
84 |
temp_file.close()
|
85 |
return Image.open(temp_file.name)
|
86 |
|
87 |
+
# Process a list of images with various options
|
88 |
def process_images(image_files, enhance, scale, adjust_dpi, dpi, resize, width, height):
|
89 |
processed_images = []
|
90 |
+
file_paths = []
|
91 |
+
descriptions = [] # List to store descriptions
|
92 |
|
93 |
for image_file in image_files:
|
94 |
input_image = np.array(Image.open(image_file).convert('RGB'))
|
|
|
103 |
if resize:
|
104 |
original_image = resize_image(np.array(original_image), width, height)
|
105 |
|
106 |
+
# Generate description
|
107 |
+
description = generate_description(original_image)
|
108 |
+
descriptions.append(description)
|
109 |
+
|
110 |
+
# Sanitize the base filename
|
111 |
+
base_name = os.path.basename(image_file.name)
|
112 |
+
file_name, _ = os.path.splitext(base_name)
|
113 |
+
|
114 |
+
# Remove any characters that aren't alphanumeric, spaces, underscores, or hyphens
|
115 |
+
file_name = ''.join(e for e in file_name if e.isalnum() or e in (' ', '_', '-')).strip().replace(' ', '_')
|
116 |
+
|
117 |
+
# Create a final file path without unnecessary suffixes
|
118 |
+
output_path = os.path.join(tempfile.gettempdir(), f"{file_name}.jpg")
|
119 |
original_image.save(output_path, format='JPEG')
|
120 |
+
|
121 |
+
processed_images.append(original_image)
|
122 |
+
file_paths.append(output_path)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
123 |
|
124 |
+
return processed_images, file_paths, descriptions
|
125 |
|
126 |
+
# Set up Gradio interface with share=True for public access
|
127 |
iface = gr.Interface(
|
128 |
fn=process_images,
|
129 |
inputs=[
|
|
|
137 |
gr.Number(label="Height", value=512)
|
138 |
],
|
139 |
outputs=[
|
140 |
+
gr.Gallery(label="Final Images"), # Use gr.Gallery to display multiple images
|
141 |
+
gr.Files(label="Download Final Images"),
|
142 |
+
gr.Textbox(label="Image Descriptions", lines=5) # Display generated descriptions
|
143 |
],
|
144 |
+
title="Multi-Image Enhancer with Hugging Face Descriptions",
|
145 |
+
description="Upload multiple images (.jpg, .png), enhance using AI, adjust DPI, resize, generate descriptions, and download the final results."
|
146 |
)
|
147 |
|
148 |
+
iface.launch(debug=True, share=True)
|