Spaces:
Running
Running
import torch | |
from PIL import Image | |
from RealESRGAN import RealESRGAN | |
import gradio as gr | |
import numpy as np | |
import tempfile | |
import time | |
import os | |
from transformers import pipeline | |
import csv | |
import zipfile | |
# Check for GPU availability | |
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu') | |
# Load RealESRGAN model with specified scale | |
def load_model(scale): | |
model = RealESRGAN(device, scale=scale) | |
weights_path = f'weights/RealESRGAN_x{scale}.pth' | |
try: | |
model.load_weights(weights_path, download=True) | |
print(f"Weights for scale {scale} loaded successfully.") | |
except Exception as e: | |
print(f"Error loading weights for scale {scale}: {e}") | |
model.load_weights(weights_path, download=False) | |
return model | |
# Load models for different scales | |
model2 = load_model(2) | |
model4 = load_model(4) | |
model8 = load_model(8) | |
# Hugging Face image description pipeline | |
description_generator = pipeline("image-to-text", model="nlpconnect/vit-gpt2-image-captioning") | |
# Enhance image based on selected scale | |
def enhance_image(image, scale): | |
try: | |
image_np = np.array(image.convert('RGB')) | |
if scale == '2x': | |
result = model2.predict(image_np) | |
elif scale == '4x': | |
result = model4.predict(image_np) | |
else: | |
result = model8.predict(image_np) | |
return Image.fromarray(np.uint8(result)) | |
except Exception as e: | |
print(f"Error enhancing image: {e}") | |
return image | |
# Generate image description | |
def generate_description(image): | |
try: | |
description = description_generator(image)[0]['generated_text'] | |
return description | |
except Exception as e: | |
print(f"Error generating description: {e}") | |
return "Description unavailable." | |
# Adjust DPI | |
def muda_dpi(input_image, dpi): | |
dpi_tuple = (dpi, dpi) | |
image = Image.fromarray(input_image.astype('uint8'), 'RGB') | |
temp_file = tempfile.NamedTemporaryFile(delete=False, suffix='.jpg') | |
image.save(temp_file, format='JPEG', dpi=dpi_tuple) | |
temp_file.close() | |
return Image.open(temp_file.name) | |
# Resize an image | |
def resize_image(input_image, width, height): | |
image = Image.fromarray(input_image.astype('uint8'), 'RGB') | |
resized_image = image.resize((width, height)) | |
temp_file = tempfile.NamedTemporaryFile(delete=False, suffix='.jpg') | |
resized_image.save(temp_file, format='JPEG') | |
temp_file.close() | |
return Image.open(temp_file.name) | |
# Process images and generate a ZIP file with images and CSV | |
def process_images(image_files, enhance, scale, adjust_dpi, dpi, resize, width, height): | |
processed_images = [] | |
file_paths = [] | |
descriptions = [] | |
# Temporary CSV file path | |
csv_file_path = os.path.join(tempfile.gettempdir(), "image_descriptions.csv") | |
with open(csv_file_path, mode="w", newline="") as csv_file: | |
writer = csv.writer(csv_file) | |
writer.writerow(["Filename", "Title", "Keywords"]) | |
for image_file in image_files: | |
input_image = np.array(Image.open(image_file).convert('RGB')) | |
original_image = Image.fromarray(input_image.astype('uint8'), 'RGB') | |
if enhance: | |
original_image = enhance_image(original_image, scale) | |
if adjust_dpi: | |
original_image = muda_dpi(np.array(original_image), dpi) | |
if resize: | |
original_image = resize_image(np.array(original_image), width, height) | |
# Generate description | |
description = generate_description(original_image) | |
title = description # Using description as the title | |
keywords = ", ".join(set(description.split()))[:45] # Limit to 45 unique words | |
# Clean the filename | |
base_name = os.path.basename(image_file.name) | |
file_name, _ = os.path.splitext(base_name) | |
file_name = ''.join(e for e in file_name if e.isalnum() or e in (' ', '_', '-')).strip().replace(' ', '_') | |
# Final image path | |
output_path = os.path.join(tempfile.gettempdir(), f"{file_name}.jpg") | |
original_image.save(output_path, format='JPEG') | |
# Write to CSV | |
writer.writerow([file_name, title, keywords]) | |
# Collect image paths and descriptions | |
processed_images.append(original_image) | |
file_paths.append(output_path) | |
descriptions.append(description) | |
# Create a ZIP file with all images and CSV | |
zip_file_path = os.path.join(tempfile.gettempdir(), "processed_images.zip") | |
with zipfile.ZipFile(zip_file_path, 'w') as zipf: | |
for file_path in file_paths: | |
zipf.write(file_path, arcname=os.path.basename(file_path)) | |
zipf.write(csv_file_path, arcname="image_descriptions.csv") | |
return processed_images, zip_file_path, descriptions | |
# Gradio interface | |
iface = gr.Interface( | |
fn=process_images, | |
inputs=[ | |
gr.Files(label="Upload Image Files"), | |
gr.Checkbox(label="Enhance Images (ESRGAN)"), | |
gr.Radio(['2x', '4x', '8x'], type="value", value='2x', label='Resolution model'), | |
gr.Checkbox(label="Adjust DPI"), | |
gr.Number(label="DPI", value=300), | |
gr.Checkbox(label="Resize"), | |
gr.Number(label="Width", value=512), | |
gr.Number(label="Height", value=512) | |
], | |
outputs=[ | |
gr.Gallery(label="Final Images"), | |
gr.File(label="Download ZIP of Images and Descriptions"), | |
gr.Textbox(label="Image Descriptions", lines=5) | |
], | |
title="Multi-Image Enhancer with Hugging Face Descriptions", | |
description="Upload multiple images, enhance, adjust DPI, resize, generate descriptions, and download the results and a ZIP archive." | |
) | |
iface.launch(debug=True, share=True) | |