abhinavyadav11's picture
Update app.py
a020f50 verified
import numpy as np
import streamlit as st
import cv2 # Added import for OpenCV
from PIL import Image # For image decoding
from tensorflow.keras.preprocessing.image import img_to_array
from tensorflow.keras.models import load_model
# Load your trained model
model = load_model('eye_detection.h5')
IMG_SIZE = 224 # Resize the image to the input size of your model (e.g., 224x224)
# Streamlit App Title
st.title("πŸ‘οΈ Real-Time Eye Detection")
st.write("Detect whether eyes are open or closed in real-time using your webcam.")
# Sidebar
st.sidebar.title("πŸ”§ Controls")
run = st.sidebar.checkbox("Start Webcam")
st.sidebar.write("Toggle the checkbox to start/stop the webcam.")
st.sidebar.write("Press 'Stop' to end the app.")
st.sidebar.info("Tip: Ensure your webcam is properly connected and accessible.")
# Webcam feed and status placeholders
FRAME_WINDOW = st.image([])
status_placeholder = st.markdown("**Status:** Waiting for webcam input...")
if run:
# Capture an image from the webcam
camera_input = st.camera_input("Capture image")
if camera_input:
# Decode to PIL Image and convert to RGB
img = Image.open(camera_input).convert('RGB')
# Resize and convert to array
img_resized = img.resize((IMG_SIZE, IMG_SIZE))
img_array = img_to_array(img_resized) / 255.0
img_array = np.expand_dims(img_array, axis=0)
# Predict eye status
prediction = model.predict(img_array)
# Determine status and color
if prediction[0][0] > 0.8:
status = "Eye is Open πŸ‘€"
status_color = "green"
else:
status = "Eye is Closed 😴"
status_color = "red"
# Update UI
status_placeholder.markdown(
f"**Status:** <span style='color:{status_color}'>{status}</span>",
unsafe_allow_html=True
)
FRAME_WINDOW.image(img)
else:
st.write("Webcam is stopped. Check the sidebar to start.")