import gradio as gr import requests, json import torch from PIL import Image from transformers import BlipProcessor, BlipForConditionalGeneration processor = BlipProcessor.from_pretrained("Salesforce/blip-image-captioning-base") model = BlipForConditionalGeneration.from_pretrained("Salesforce/blip-image-captioning-base") def get_completion(raw_image): text = "a photography of" inputs = processor(raw_image, text, return_tensors="pt") out = model.generate(**inputs) return processor.decode(out[0], skip_special_tokens=True) gr.close_all() demo = gr.Interface(fn=get_completion, inputs=[gr.Image(label="Upload image", type="pil")], outputs=[gr.Textbox(label="Caption")], title="Image Captioning with BLIP", description="Caption any image using the BLIP model, Made by Abdul Samad", allow_flagging="never", examples=["rottweiler_puppy_dog_background_4.jpg", "rottweiler_dog_wedding_dresses.jpg", "cheetah_animal_predator_525169.jpg", "woman_cheetah_animal_human.jpg","man_stands_near_wild.jpg","calidris_alba_bird_nature.jpg"] ) demo.launch()