Spaces:
Running
Running
File size: 4,463 Bytes
f7c0abb e7b1f60 fa8e2ce d0fc55f f7c0abb 05d6121 f9d8346 e7b1f60 465b43c e7b1f60 465b43c e7b1f60 05d6121 fa8e2ce 6025f1c 05d6121 e7b1f60 2372d93 05d6121 6025f1c 603790a d0fc55f f7c0abb 3276441 f7c0abb 9ab6d04 6025f1c e181176 f7c0abb d0fc55f 045ef7e f7c0abb 05d6121 f7c0abb 05d6121 e7b1f60 05d6121 b9e465f 9ab6d04 fa8e2ce e7b1f60 93c4b1f 7a83ce6 20d0b59 387e225 05d6121 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 |
import os
from fastapi import FastAPI, HTTPException, Query
from fastapi.responses import StreamingResponse
from openai import AsyncOpenAI
app = FastAPI()
# Define available models (you can expand this list)
AVAILABLE_MODELS = {
"openai/gpt-4.1": "OpenAI GPT-4.1",
"openai/gpt-4.1-mini": "OpenAI GPT-4.1-mini",
"openai/gpt-4.1-nano": "OpenAI GPT-4.1-nano",
"openai/gpt-4o": "OpenAI GPT-4o",
"openai/gpt-4o-mini": "OpenAI GPT-4o mini",
"openai/o4-mini": "OpenAI o4-mini",
"microsoft/MAI-DS-R1": "MAI-DS-R1",
"microsoft/Phi-3.5-MoE-instruct": "Phi-3.5-MoE instruct (128k)",
"microsoft/Phi-3.5-mini-instruct": "Phi-3.5-mini instruct (128k)",
"microsoft/Phi-3.5-vision-instruct": "Phi-3.5-vision instruct (128k)",
"microsoft/Phi-3-medium-128k-instruct": "Phi-3-medium instruct (128k)",
"microsoft/Phi-3-medium-4k-instruct": "Phi-3-medium instruct (4k)",
"microsoft/Phi-3-mini-128k-instruct": "Phi-3-mini instruct (128k)",
"microsoft/Phi-3-small-128k-instruct": "Phi-3-small instruct (128k)",
"microsoft/Phi-3-small-8k-instruct": "Phi-3-small instruct (8k)",
"microsoft/Phi-4": "Phi-4",
"microsoft/Phi-4-mini-instruct": "Phi-4-mini-instruct",
"microsoft/Phi-4-multimodal-instruct": "Phi-4-multimodal-instruct",
"ai21-labs/AI21-Jamba-1.5-Large": "AI21 Jamba 1.5 Large",
"ai21-labs/AI21-Jamba-1.5-Mini": "AI21 Jamba 1.5 Mini",
"mistral-ai/Codestral-2501": "Codestral 25.01",
"cohere/Cohere-command-r": "Cohere Command R",
"cohere/Cohere-command-r-08-2024": "Cohere Command R 08-2024",
"cohere/Cohere-command-r-plus": "Cohere Command R+",
"cohere/Cohere-command-r-plus-08-2024": "Cohere Command R+ 08-2024",
"deepseek/DeepSeek-R1": "DeepSeek-R1",
"deepseek/DeepSeek-V3-0324": "DeepSeek-V3-0324",
"meta/Llama-3.2-11B-Vision-Instruct": "Llama-3.2-11B-Vision-Instruct",
"meta/Llama-3.2-90B-Vision-Instruct": "Llama-3.2-90B-Vision-Instruct",
"meta/Llama-3.3-70B-Instruct": "Llama-3.3-70B-Instruct",
"meta/Llama-4-Maverick-17B-128E-Instruct-FP8": "Llama 4 Maverick 17B 128E Instruct FP8",
"meta/Llama-4-Scout-17B-16E-Instruct": "Llama 4 Scout 17B 16E Instruct",
"meta/Meta-Llama-3.1-405B-Instruct": "Meta-Llama-3.1-405B-Instruct",
"meta/Meta-Llama-3.1-70B-Instruct": "Meta-Llama-3.1-70B-Instruct",
"meta/Meta-Llama-3.1-8B-Instruct": "Meta-Llama-3.1-8B-Instruct",
"meta/Meta-Llama-3-70B-Instruct": "Meta-Llama-3-70B-Instruct",
"meta/Meta-Llama-3-8B-Instruct": "Meta-Llama-3-8B-Instruct",
"mistral-ai/Ministral-3B": "Ministral 3B",
"mistral-ai/Mistral-Large-2411": "Mistral Large 24.11",
"mistral-ai/Mistral-Nemo": "Mistral Nemo",
"mistral-ai/Mistral-large-2407": "Mistral Large (2407)",
"mistral-ai/Mistral-small": "Mistral Small",
"cohere/cohere-command-a": "Cohere Command A",
"core42/jais-30b-chat": "JAIS 30b Chat",
"mistral-ai/mistral-small-2503": "Mistral Small 3.1"
}
async def generate_ai_response(prompt: str, model: str):
# Configuration for unofficial GitHub AI endpoint
token = os.getenv("GITHUB_TOKEN")
if not token:
raise HTTPException(status_code=500, detail="GitHub token not configured")
endpoint = "https://models.github.ai/inference"
# Validate the model
if model not in AVAILABLE_MODELS:
raise HTTPException(status_code=400, detail=f"Model not available. Choose from: {', '.join(AVAILABLE_MODELS.keys())}")
client = AsyncOpenAI(base_url=endpoint, api_key=token)
try:
stream = await client.chat.completions.create(
messages=[
{"role": "user", "content": prompt}
],
model=model,
temperature=1.0,
top_p=1.0,
stream=True
)
async for chunk in stream:
if chunk.choices and chunk.choices[0].delta.content:
yield chunk.choices[0].delta.content
except Exception as err:
yield f"Error: {str(err)}"
raise HTTPException(status_code=500, detail="AI generation failed")
@app.post("/generate")
async def generate_response(
prompt: str = Query(..., description="The prompt for the AI"),
model: str = Query("openai/gpt-4.1-mini", description="The model to use for generation")
):
if not prompt:
raise HTTPException(status_code=400, detail="Prompt cannot be empty")
return StreamingResponse(
generate_ai_response(prompt, model),
media_type="text/event-stream"
)
def get_app():
return app |