Spaces:
Sleeping
Sleeping
Update main.py
Browse files
main.py
CHANGED
@@ -2,8 +2,10 @@ from fastapi import FastAPI
|
|
2 |
from pydantic import BaseModel
|
3 |
from fastapi.middleware.cors import CORSMiddleware
|
4 |
from fastapi.responses import StreamingResponse
|
5 |
-
from transformers import AutoModelForCausalLM, AutoTokenizer
|
6 |
import torch
|
|
|
|
|
7 |
|
8 |
app = FastAPI()
|
9 |
|
@@ -27,6 +29,36 @@ model = AutoModelForCausalLM.from_pretrained(
|
|
27 |
class Question(BaseModel):
|
28 |
question: str
|
29 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
30 |
def generate_response_chunks(prompt: str):
|
31 |
try:
|
32 |
# Prepare input
|
@@ -41,23 +73,28 @@ def generate_response_chunks(prompt: str):
|
|
41 |
return_tensors="pt"
|
42 |
).to(model.device)
|
43 |
|
44 |
-
# Set up streamer
|
45 |
-
streamer =
|
46 |
-
|
47 |
-
#
|
48 |
-
|
49 |
-
|
50 |
-
|
51 |
-
|
52 |
-
|
53 |
-
|
54 |
-
|
55 |
-
|
56 |
-
|
57 |
-
|
58 |
-
|
59 |
-
|
60 |
-
|
|
|
|
|
|
|
|
|
|
|
61 |
|
62 |
except Exception as e:
|
63 |
yield f"Error occurred: {str(e)}"
|
|
|
2 |
from pydantic import BaseModel
|
3 |
from fastapi.middleware.cors import CORSMiddleware
|
4 |
from fastapi.responses import StreamingResponse
|
5 |
+
from transformers import AutoModelForCausalLM, AutoTokenizer
|
6 |
import torch
|
7 |
+
from queue import Queue
|
8 |
+
from threading import Thread
|
9 |
|
10 |
app = FastAPI()
|
11 |
|
|
|
29 |
class Question(BaseModel):
|
30 |
question: str
|
31 |
|
32 |
+
class CustomTextStreamer:
|
33 |
+
def __init__(self, tokenizer):
|
34 |
+
self.tokenizer = tokenizer
|
35 |
+
self.queue = Queue()
|
36 |
+
self.skip_prompt = True
|
37 |
+
self.skip_special_tokens = True
|
38 |
+
|
39 |
+
def put(self, value):
|
40 |
+
# Handle token IDs (value is a tensor of token IDs)
|
41 |
+
if isinstance(value, torch.Tensor):
|
42 |
+
if value.dim() > 1:
|
43 |
+
value = value.squeeze(0) # Remove batch dimension if present
|
44 |
+
text = self.tokenizer.decode(value, skip_special_tokens=self.skip_special_tokens)
|
45 |
+
if text and not (self.skip_prompt and self.is_prompt(value)):
|
46 |
+
self.queue.put(text)
|
47 |
+
|
48 |
+
def end(self):
|
49 |
+
self.queue.put(None) # Signal end of generation
|
50 |
+
|
51 |
+
def is_prompt(self, value):
|
52 |
+
# Simple heuristic to skip prompt tokens (optional, adjust as needed)
|
53 |
+
return False # For simplicity, assume all tokens are response tokens
|
54 |
+
|
55 |
+
def __iter__(self):
|
56 |
+
while True:
|
57 |
+
item = self.queue.get()
|
58 |
+
if item is None:
|
59 |
+
break
|
60 |
+
yield item
|
61 |
+
|
62 |
def generate_response_chunks(prompt: str):
|
63 |
try:
|
64 |
# Prepare input
|
|
|
73 |
return_tensors="pt"
|
74 |
).to(model.device)
|
75 |
|
76 |
+
# Set up custom streamer
|
77 |
+
streamer = CustomTextStreamer(tokenizer)
|
78 |
+
|
79 |
+
# Run generation in a separate thread to avoid blocking
|
80 |
+
def generate():
|
81 |
+
with torch.no_grad():
|
82 |
+
model.generate(
|
83 |
+
inputs,
|
84 |
+
max_new_tokens=512,
|
85 |
+
do_sample=True,
|
86 |
+
temperature=0.7,
|
87 |
+
top_p=0.9,
|
88 |
+
streamer=streamer
|
89 |
+
)
|
90 |
+
|
91 |
+
# Start generation in a thread
|
92 |
+
thread = Thread(target=generate)
|
93 |
+
thread.start()
|
94 |
+
|
95 |
+
# Yield chunks from the streamer
|
96 |
+
for text in streamer:
|
97 |
+
yield text
|
98 |
|
99 |
except Exception as e:
|
100 |
yield f"Error occurred: {str(e)}"
|