Spaces:
Running
on
Zero
Running
on
Zero
File size: 43,191 Bytes
f4c0f01 1f683db f5d1792 1f683db 72544b8 1f683db a8285e4 1f683db a8285e4 1f683db a8285e4 1f683db a8285e4 1f683db a8285e4 1f683db a8285e4 1f683db a8285e4 f609ae7 a8285e4 1f683db a8285e4 1f683db a8285e4 1f683db a8285e4 1f683db a8285e4 1f683db a8285e4 1f683db a8285e4 1f683db a8285e4 1f683db a8285e4 1f683db a8285e4 1f683db a8285e4 1f683db a8285e4 1f683db a8285e4 1f683db a8285e4 1f683db a8285e4 1f683db a8285e4 1f683db a8285e4 1f683db a8285e4 1f683db a8285e4 1f683db a8285e4 1f683db f76da15 8cd6d72 f76da15 42e6b36 f76da15 42e6b36 8cd6d72 f76da15 8cd6d72 1f683db f76da15 8cd6d72 a8285e4 f76da15 a8285e4 f76da15 a8285e4 f76da15 1f683db f76da15 a8285e4 f76da15 a8285e4 f76da15 f609ae7 f76da15 f609ae7 f76da15 8cd6d72 f76da15 a8285e4 5224f4e 8f83e1c 1f683db a8285e4 1f683db |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 |
import os
import re
import json
import time
from tqdm import tqdm
from pathlib import Path
import spaces
import gradio as gr
# Helper functions that don't use GPU
def safe_tokenize(text):
"""Pure regex tokenizer with no NLTK dependency"""
if not text:
return []
# Replace punctuation with spaces around them
text = re.sub(r'([.,!?;:()\[\]{}"\'/\\])', r' \1 ', text)
# Split on whitespace and filter empty strings
return [token for token in re.split(r'\s+', text.lower()) if token]
def detect_language(text):
"""Detect if text is primarily Arabic or English"""
# Simple heuristic: count Arabic characters
arabic_chars = re.findall(r'[\u0600-\u06FF]', text)
is_arabic = len(arabic_chars) > len(text) * 0.5
return "arabic" if is_arabic else "english"
# Comprehensive evaluation dataset
comprehensive_evaluation_data = [
# === Overview ===
{
"query": "ما هي رؤية السعودية 2030؟",
"reference": "رؤية السعودية 2030 هي خطة استراتيجية تهدف إلى تنويع الاقتصاد السعودي وتقليل الاعتماد على النفط مع تطوير قطاعات مختلفة مثل الصحة والتعليم والسياحة.",
"category": "overview",
"language": "arabic"
},
{
"query": "What is Saudi Vision 2030?",
"reference": "Saudi Vision 2030 is a strategic framework aiming to diversify Saudi Arabia's economy and reduce dependence on oil, while developing sectors like health, education, and tourism.",
"category": "overview",
"language": "english"
},
# === Economic Goals ===
{
"query": "ما هي الأهداف الاقتصادية لرؤية 2030؟",
"reference": "تشمل الأهداف الاقتصادية زيادة مساهمة القطاع الخاص إلى 65%، وزيادة الصادرات غير النفطية إلى 50% من الناتج المحلي غير النفطي، وخفض البطالة إلى 7%.",
"category": "economic",
"language": "arabic"
},
{
"query": "What are the economic goals of Vision 2030?",
"reference": "The economic goals of Vision 2030 include increasing private sector contribution from 40% to 65% of GDP, raising non-oil exports from 16% to 50%, reducing unemployment from 11.6% to 7%.",
"category": "economic",
"language": "english"
},
# === Social Goals ===
{
"query": "كيف تعزز رؤية 2030 الإرث الثقافي السعودي؟",
"reference": "تتضمن رؤية 2030 الحفاظ على الهوية الوطنية، تسجيل مواقع أثرية في اليونسكو، وتعزيز الفعاليات الثقافية.",
"category": "social",
"language": "arabic"
},
{
"query": "How does Vision 2030 aim to improve quality of life?",
"reference": "Vision 2030 plans to enhance quality of life by expanding sports facilities, promoting cultural activities, and boosting tourism and entertainment sectors.",
"category": "social",
"language": "english"
}
]
# RAG Service class
class Vision2030Service:
def __init__(self):
self.initialized = False
self.model = None
self.tokenizer = None
self.vector_store = None
self.conversation_history = []
@spaces.GPU
def initialize(self):
"""Initialize the system - ALL GPU operations must happen here"""
if self.initialized:
return True
try:
# Import all GPU-dependent libraries only inside this function
import torch
import PyPDF2
from transformers import AutoTokenizer, AutoModelForCausalLM
from sentence_transformers import SentenceTransformer
from langchain.text_splitter import RecursiveCharacterTextSplitter
from langchain_community.vectorstores import FAISS
from langchain.schema import Document
from langchain.embeddings import HuggingFaceEmbeddings
# Define paths for PDF files
pdf_files = ["saudi_vision203.pdf", "saudi_vision2030_ar.pdf"]
# Process PDFs and create vector store
vector_store_dir = "vector_stores"
os.makedirs(vector_store_dir, exist_ok=True)
if os.path.exists(os.path.join(vector_store_dir, "index.faiss")):
print("Loading existing vector store...")
embedding_function = HuggingFaceEmbeddings(
model_name="sentence-transformers/paraphrase-multilingual-mpnet-base-v2"
)
# Important: Add allow_dangerous_deserialization=True to fix the pickle error
self.vector_store = FAISS.load_local(
vector_store_dir,
embedding_function,
allow_dangerous_deserialization=True # Add this parameter
)
else:
print("Creating new vector store...")
# Process PDFs
documents = []
for pdf_path in pdf_files:
if not os.path.exists(pdf_path):
print(f"Warning: {pdf_path} does not exist")
continue
print(f"Processing {pdf_path}...")
text = ""
with open(pdf_path, 'rb') as file:
reader = PyPDF2.PdfReader(file)
for page in reader.pages:
page_text = page.extract_text()
if page_text:
text += page_text + "\n\n"
if text.strip():
doc = Document(
page_content=text,
metadata={"source": pdf_path, "filename": os.path.basename(pdf_path)}
)
documents.append(doc)
if not documents:
raise ValueError("No documents were processed successfully.")
# Split into chunks
text_splitter = RecursiveCharacterTextSplitter(
chunk_size=500,
chunk_overlap=50,
separators=["\n\n", "\n", ".", "!", "?", ",", " ", ""]
)
chunks = []
for doc in documents:
doc_chunks = text_splitter.split_text(doc.page_content)
chunks.extend([
Document(page_content=chunk, metadata=doc.metadata)
for chunk in doc_chunks
])
# Create vector store
embedding_function = HuggingFaceEmbeddings(
model_name="sentence-transformers/paraphrase-multilingual-mpnet-base-v2"
)
self.vector_store = FAISS.from_documents(chunks, embedding_function)
self.vector_store.save_local(vector_store_dir)
# Load model
model_name = "ALLaM-AI/ALLaM-7B-Instruct-preview"
self.tokenizer = AutoTokenizer.from_pretrained(
model_name,
trust_remote_code=True,
use_fast=False
)
self.model = AutoModelForCausalLM.from_pretrained(
model_name,
torch_dtype=torch.bfloat16,
trust_remote_code=True,
device_map="auto",
)
self.initialized = True
return True
except Exception as e:
import traceback
print(f"Initialization error: {e}")
print(traceback.format_exc())
return False
@spaces.GPU
def retrieve_context(self, query, top_k=5):
"""Retrieve contexts from vector store"""
# Import must be inside the function to avoid CUDA init in main process
if not self.initialized:
return []
try:
results = self.vector_store.similarity_search_with_score(query, k=top_k)
contexts = []
for doc, score in results:
contexts.append({
"content": doc.page_content,
"source": doc.metadata.get("source", "Unknown"),
"relevance_score": score
})
return contexts
except Exception as e:
print(f"Error retrieving context: {e}")
return []
@spaces.GPU
def generate_response(self, query, contexts, language="auto"):
"""Generate response using the model"""
# Import must be inside the function to avoid CUDA init in main process
import torch
if not self.initialized or self.model is None or self.tokenizer is None:
return "I'm still initializing. Please try again in a moment."
try:
# Auto-detect language if not specified
if language == "auto":
language = detect_language(query)
# Format the prompt based on language
if language == "arabic":
instruction = (
"أنت مساعد افتراضي يهتم برؤية السعودية 2030. استخدم المعلومات التالية للإجابة على السؤال. "
"إذا لم تعرف الإجابة، فقل بأمانة إنك لا تعرف."
)
else: # english
instruction = (
"You are a virtual assistant for Saudi Vision 2030. Use the following information to answer the question. "
"If you don't know the answer, honestly say you don't know."
)
# Combine retrieved contexts
context_text = "\n\n".join([f"Document: {ctx['content']}" for ctx in contexts])
# Format the prompt for ALLaM instruction format
prompt = f"""<s>[INST] {instruction}
Context:
{context_text}
Question: {query} [/INST]</s>"""
# Generate response
inputs = self.tokenizer(prompt, return_tensors="pt").to(self.model.device)
outputs = self.model.generate(
inputs.input_ids,
attention_mask=inputs.attention_mask,
max_new_tokens=512,
temperature=0.7,
top_p=0.9,
do_sample=True,
repetition_penalty=1.1
)
# Decode the response
full_output = self.tokenizer.decode(outputs[0], skip_special_tokens=True)
# Extract just the answer part (after the instruction)
response = full_output.split("[/INST]")[-1].strip()
# If response is empty for some reason, return the full output
if not response:
response = full_output
return response
except Exception as e:
import traceback
print(f"Error generating response: {e}")
print(traceback.format_exc())
return f"Sorry, I encountered an error while generating a response."
@spaces.GPU
def answer_question(self, query):
"""Process a user query and return a response with sources"""
if not self.initialized:
if not self.initialize():
return "System initialization failed. Please check the logs.", []
try:
# Add user query to conversation history
self.conversation_history.append({"role": "user", "content": query})
# Get the full conversation context
conversation_context = "\n".join([
f"{'User' if msg['role'] == 'user' else 'Assistant'}: {msg['content']}"
for msg in self.conversation_history[-6:] # Keep last 3 turns
])
# Enhance query with conversation context
enhanced_query = f"{conversation_context}\n{query}"
# Retrieve relevant contexts
contexts = self.retrieve_context(enhanced_query, top_k=5)
# Generate response
response = self.generate_response(query, contexts)
# Add response to conversation history
self.conversation_history.append({"role": "assistant", "content": response})
# Get sources
sources = [ctx.get("source", "Unknown") for ctx in contexts]
unique_sources = list(set(sources))
return response, unique_sources
except Exception as e:
import traceback
print(f"Error answering question: {e}")
print(traceback.format_exc())
return f"Sorry, I encountered an error: {str(e)}", []
def reset_conversation(self):
"""Reset the conversation history"""
self.conversation_history = []
return "Conversation has been reset."
def main():
# Create the Vision 2030 service
service = Vision2030Service()
# Define theme and styling
theme = gr.themes.Soft(
primary_hue="emerald",
secondary_hue="teal",
).set(
body_background_fill="linear-gradient(to right, #f0f9ff, #e6f7ff)",
button_primary_background_fill="linear-gradient(90deg, #1e9e5a, #1d8753)",
button_primary_background_fill_hover="linear-gradient(90deg, #1d8753, #176f44)",
button_primary_text_color="white",
button_secondary_background_fill="#f0f0f0",
button_secondary_background_fill_hover="#e0e0e0",
block_title_text_weight="600",
block_border_width="2px",
block_shadow="0px 4px 6px rgba(0, 0, 0, 0.1)",
background_fill_primary="#ffffff",
)
# Build the Gradio interface with enhanced styling
with gr.Blocks(title="Vision 2030 Assistant", theme=theme, css="""
.language-toggle { margin-bottom: 20px; }
.container { border-radius: 10px; padding: 20px; box-shadow: 0 4px 6px rgba(0,0,0,0.1); }
.header-img { margin-bottom: 10px; border-radius: 10px; }
.highlight { background-color: rgba(46, 175, 125, 0.1); padding: 15px; border-radius: 8px; margin: 10px 0; }
.footer { text-align: center; margin-top: 30px; color: #666; font-size: 0.9em; }
.loading-spinner { display: inline-block; width: 20px; height: 20px; margin-right: 10px; }
.status-indicator { display: inline-flex; align-items: center; padding: 8px; border-radius: 4px; }
.status-indicator.success { background-color: rgba(46, 175, 125, 0.2); }
.status-indicator.warning { background-color: rgba(255, 190, 0, 0.2); }
.status-indicator.error { background-color: rgba(255, 76, 76, 0.2); }
.header { display: flex; justify-content: space-between; align-items: center; }
.lang-btn { min-width: 100px; }
.chat-input { background-color: white; border-radius: 8px; border: 1px solid #ddd; }
.info-box { background-color: #f8f9fa; padding: 10px; border-radius: 8px; margin-top: 10px; }
/* Style for sample question buttons */
.gradio-button.secondary {
margin-bottom: 8px;
text-align: left;
background-color: #f0f9ff;
transition: all 0.3s ease;
display: block;
width: 100%;
padding: 8px 12px;
}
.gradio-button.secondary:hover {
background-color: #e0f2fe;
transform: translateX(3px);
box-shadow: 0 2px 4px rgba(0,0,0,0.1);
}
""") as demo:
# Header with stylized title (no external images)
with gr.Row():
with gr.Column():
with gr.Row():
# Add local logo image on the left
with gr.Column(scale=1, min_width=100):
gr.Image("logo.png", show_label=False, height=80)
# Title and tagline on the right
with gr.Column(scale=4):
gr.Markdown("""
# Vision 2030 Assistant
### Your interactive guide to Saudi Arabia's national transformation program
""")
# Language toggle in the header with better styling
with gr.Row(elem_classes=["language-toggle"]):
with gr.Column(scale=1):
language_toggle = gr.Radio(
choices=["English", "العربية (Arabic)", "Auto-detect"],
value="Auto-detect",
label="Interface Language",
info="Choose your preferred language",
elem_classes=["lang-btn"]
)
# Main interface with tabs
with gr.Tabs() as tabs:
# Chat Tab with enhanced design
with gr.TabItem("💬 Chat", id="chat"):
with gr.Row():
with gr.Column(scale=2):
chatbot = gr.Chatbot(
height=450,
bubble_full_width=False,
show_label=False
)
with gr.Row():
msg = gr.Textbox(
label="",
placeholder="Ask a question about Saudi Vision 2030...",
show_label=False,
elem_classes=["chat-input"],
scale=9
)
submit_btn = gr.Button("Send", variant="primary", scale=1)
with gr.Row():
clear = gr.Button("Clear History", variant="secondary")
thinking_indicator = gr.HTML(
value='<div id="thinking" style="display:none;">The assistant is thinking...</div>',
visible=True
)
# Sidebar with features
with gr.Column(scale=1):
gr.Markdown("### Quick Information")
with gr.Accordion("Vision 2030 Pillars", open=False):
gr.Markdown("""
* **Vibrant Society** - Cultural and social development
* **Thriving Economy** - Economic diversification
* **Ambitious Nation** - Effective governance
""")
with gr.Accordion("About this Assistant", open=False):
gr.Markdown("""
This assistant uses advanced NLP models to answer questions about Saudi Vision 2030 in both English and Arabic. The system retrieves information from official documents and provides relevant answers.
""")
system_status = gr.HTML(
value='<div class="status-indicator warning">⚠️ System initializing</div>',
visible=True
)
init_btn = gr.Button("Initialize System", variant="primary")
# Replace dropdown with clickable buttons
gr.Markdown("### Sample Questions")
with gr.Group():
# English questions
q1_btn = gr.Button("What is Saudi Vision 2030?", variant="secondary")
q2_btn = gr.Button("What are the economic goals of Vision 2030?", variant="secondary")
q3_btn = gr.Button("How does Vision 2030 aim to improve quality of life?", variant="secondary")
# Arabic questions
q4_btn = gr.Button("ما هي رؤية السعودية 2030؟", variant="secondary")
q5_btn = gr.Button("ما هي الأهداف الاقتصادية لرؤية 2030؟", variant="secondary")
q6_btn = gr.Button("كيف تعزز رؤية 2030 الإرث الثقافي السعودي؟", variant="secondary")
# Analytics and insights tab
with gr.TabItem("📊 Analytics", id="analytics"):
gr.Markdown("### Vision 2030 Progress Tracking")
with gr.Tabs():
with gr.TabItem("Economic Metrics"):
gr.Markdown("""
<div class="highlight">
<h3>Key Economic Indicators</h3>
<p>This section displays real-time progress on economic targets of Vision 2030.</p>
</div>
""")
with gr.Row():
with gr.Column():
gr.HTML("""
<div style="background: white; padding: 15px; border-radius: 10px; box-shadow: 0 2px 5px rgba(0,0,0,0.1);">
<h4>GDP Non-oil Growth</h4>
<div style="height: 20px; background-color: #e0e0e0; border-radius: 10px; margin: 10px 0;">
<div style="height: 100%; width: 68%; background: linear-gradient(to right, #1e9e5a, #63e6be); border-radius: 10px;">
</div>
</div>
<div style="display: flex; justify-content: space-between;">
<span>Target: 65%</span>
<span>Current: 44%</span>
</div>
</div>
""")
with gr.Column():
gr.HTML("""
<div style="background: white; padding: 15px; border-radius: 10px; box-shadow: 0 2px 5px rgba(0,0,0,0.1);">
<h4>Unemployment Rate</h4>
<div style="height: 20px; background-color: #e0e0e0; border-radius: 10px; margin: 10px 0;">
<div style="height: 100%; width: 55%; background: linear-gradient(to right, #1e9e5a, #63e6be); border-radius: 10px;">
</div>
</div>
<div style="display: flex; justify-content: space-between;">
<span>Target: 7%</span>
<span>Current: 9.9%</span>
</div>
</div>
""")
with gr.Column():
gr.HTML("""
<div style="background: white; padding: 15px; border-radius: 10px; box-shadow: 0 2px 5px rgba(0,0,0,0.1);">
<h4>SME Contribution to GDP</h4>
<div style="height: 20px; background-color: #e0e0e0; border-radius: 10px; margin: 10px 0;">
<div style="height: 100%; width: 32%; background: linear-gradient(to right, #1e9e5a, #63e6be); border-radius: 10px;">
</div>
</div>
<div style="display: flex; justify-content: space-between;">
<span>Target: 35%</span>
<span>Current: 22%</span>
</div>
</div>
""")
with gr.TabItem("Social Development"):
gr.Markdown("#### Social Initiative Progress")
social_chart = gr.HTML("""
<div style="background: white; padding: 20px; border-radius: 10px; margin-top: 15px;">
<h3>Quality of Life Improvement Programs</h3>
<div style="display: flex; height: 200px; align-items: flex-end; justify-content: space-around; margin: 30px 0;">
<div style="display: flex; flex-direction: column; align-items: center;">
<div style="width: 50px; height: 150px; background: linear-gradient(to top, #1e9e5a, #63e6be); border-radius: 5px 5px 0 0;"></div>
<span style="margin-top: 10px;">Tourism</span>
</div>
<div style="display: flex; flex-direction: column; align-items: center;">
<div style="width: 50px; height: 120px; background: linear-gradient(to top, #1e9e5a, #63e6be); border-radius: 5px 5px 0 0;"></div>
<span style="margin-top: 10px;">Entertainment</span>
</div>
<div style="display: flex; flex-direction: column; align-items: center;">
<div style="width: 50px; height: 180px; background: linear-gradient(to top, #1e9e5a, #63e6be); border-radius: 5px 5px 0 0;"></div>
<span style="margin-top: 10px;">Healthcare</span>
</div>
<div style="display: flex; flex-direction: column; align-items: center;">
<div style="width: 50px; height: 100px; background: linear-gradient(to top, #1e9e5a, #63e6be); border-radius: 5px 5px 0 0;"></div>
<span style="margin-top: 10px;">Housing</span>
</div>
<div style="display: flex; flex-direction: column; align-items: center;">
<div style="width: 50px; height: 160px; background: linear-gradient(to top, #1e9e5a, #63e6be); border-radius: 5px 5px 0 0;"></div>
<span style="margin-top: 10px;">Education</span>
</div>
</div>
</div>
""")
with gr.TabItem("Giga-Projects"):
gr.Markdown("#### Major Development Projects")
with gr.Row():
for project, desc in [
("NEOM", "A $500 billion mega-city with advanced technologies"),
("Red Sea Project", "Luxury tourism destination across 28,000 km²"),
("Qiddiya", "Entertainment, sports and arts destination")
]:
with gr.Column():
gr.HTML(f"""
<div style="background: white; padding: 15px; border-radius: 10px; box-shadow: 0 2px 5px rgba(0,0,0,0.1); height: 200px; position: relative; overflow: hidden;">
<div style="position: absolute; top: 0; left: 0; width: 100%; height: 70px; background: linear-gradient(90deg, #1e9e5a, #45b08c); border-radius: 10px 10px 0 0;"></div>
<div style="position: relative; padding-top: 80px; text-align: center;">
<h3>{project}</h3>
<p>{desc}</p>
<button style="background: #1e9e5a; color: white; border: none; padding: 8px 15px; border-radius: 5px; cursor: pointer; margin-top: 15px;">Learn More</button>
</div>
</div>
""")
# Technical System Status with improved visualization
with gr.TabItem("⚙️ System", id="system"):
with gr.Row():
with gr.Column():
gr.Markdown("### System Diagnostics")
status_box = gr.Textbox(
label="Status",
value="System not initialized",
lines=1
)
with gr.Group():
gr.Markdown("### PDF Documents")
pdf_status = gr.Dataframe(
headers=["File", "Status", "Size"],
datatype=["str", "str", "str"],
col_count=(3, "fixed"),
value=[["saudi_vision203.pdf", "Checking...", ""],
["saudi_vision2030_ar.pdf", "Checking...", ""]]
)
pdf_btn = gr.Button("Check PDF Files", variant="secondary")
gr.Markdown("### System Dependencies")
sys_status = gr.Dataframe(
headers=["Component", "Status"],
datatype=["str", "str"],
col_count=(2, "fixed"),
value=[["PyTorch", "Not checked"],
["Transformers", "Not checked"],
["LangChain", "Not checked"],
["FAISS", "Not checked"]]
)
sys_btn = gr.Button("Check Dependencies", variant="secondary")
# Visualization column
with gr.Column():
gr.Markdown("### System Architecture")
gr.HTML("""
<div style="background: white; padding: 20px; border-radius: 10px; margin-top: 15px;">
<svg viewBox="0 0 800 500" xmlns="http://www.w3.org/2000/svg">
<!-- User Input -->
<rect x="50" y="50" width="150" height="60" rx="10" fill="#e6f7ff" stroke="#1e9e5a" stroke-width="2"/>
<text x="125" y="85" text-anchor="middle" font-size="16">User Query</text>
<!-- Arrow down -->
<path d="M125 110 L125 160" stroke="#1e9e5a" stroke-width="3" stroke-dasharray="5,5"/>
<polygon points="125,170 120,160 130,160" fill="#1e9e5a"/>
<!-- RAG System -->
<rect x="50" y="170" width="150" height="60" rx="10" fill="#e6f7ff" stroke="#1e9e5a" stroke-width="2"/>
<text x="125" y="205" text-anchor="middle" font-size="16">RAG System</text>
<!-- Arrow right -->
<path d="M200 200 L300 200" stroke="#1e9e5a" stroke-width="3" stroke-dasharray="5,5"/>
<polygon points="310,200 300,195 300,205" fill="#1e9e5a"/>
<!-- Document Store -->
<rect x="310" y="170" width="150" height="60" rx="10" fill="#e6f7ff" stroke="#1e9e5a" stroke-width="2"/>
<text x="385" y="195" text-anchor="middle" font-size="16">Vector Store</text>
<text x="385" y="215" text-anchor="middle" font-size="14">(FAISS)</text>
<!-- Document icons -->
<rect x="350" y="270" width="30" height="40" fill="#e6f7ff" stroke="#1e9e5a" stroke-width="1"/>
<rect x="355" y="265" width="30" height="40" fill="#e6f7ff" stroke="#1e9e5a" stroke-width="1"/>
<rect x="360" y="260" width="30" height="40" fill="#e6f7ff" stroke="#1e9e5a" stroke-width="1"/>
<text x="375" y="330" text-anchor="middle" font-size="14">PDF Docs</text>
<!-- Arrow up -->
<path d="M375 260 L375 230" stroke="#1e9e5a" stroke-width="2"/>
<polygon points="375,230 370,240 380,240" fill="#1e9e5a"/>
<!-- Arrow back to RAG -->
<path d="M310 220 L200 220" stroke="#1e9e5a" stroke-width="3" stroke-dasharray="5,5"/>
<polygon points="190,220 200,215 200,225" fill="#1e9e5a"/>
<!-- Arrow down from RAG -->
<path d="M125 230 L125 280" stroke="#1e9e5a" stroke-width="3"/>
<polygon points="125,290 120,280 130,280" fill="#1e9e5a"/>
<!-- LLM -->
<rect x="50" y="290" width="150" height="60" rx="10" fill="#e6f7ff" stroke="#1e9e5a" stroke-width="2"/>
<text x="125" y="315" text-anchor="middle" font-size="16">ALLaM Model</text>
<text x="125" y="335" text-anchor="middle" font-size="14">(7B Params)</text>
<!-- Arrow down -->
<path d="M125 350 L125 400" stroke="#1e9e5a" stroke-width="3"/>
<polygon points="125,410 120,400 130,400" fill="#1e9e5a"/>
<!-- User Response -->
<rect x="50" y="410" width="150" height="60" rx="10" fill="#e6f7ff" stroke="#1e9e5a" stroke-width="2"/>
<text x="125" y="445" text-anchor="middle" font-size="16">Response</text>
</svg>
</div>
""")
# Memory usage visualization
gr.Markdown("### System Resources")
gr.HTML("""
<div style="background: white; padding: 15px; border-radius: 10px; box-shadow: 0 2px 5px rgba(0,0,0,0.1); margin-top: 15px;">
<h4>GPU Memory Usage</h4>
<div style="height: 20px; background-color: #e0e0e0; border-radius: 10px; margin: 10px 0;">
<div style="height: 100%; width: 72%; background: linear-gradient(to right, #1e9e5a, #ffc107); border-radius: 10px;">
</div>
</div>
<div style="display: flex; justify-content: space-between;">
<span>Total: 16GB</span>
<span>Used: 11.5GB</span>
</div>
<h4 style="margin-top: 20px;">CPU Usage</h4>
<div style="height: 20px; background-color: #e0e0e0; border-radius: 10px; margin: 10px 0;">
<div style="height: 100%; width: 45%; background: linear-gradient(to right, #1e9e5a, #63e6be); border-radius: 10px;">
</div>
</div>
<div style="display: flex; justify-content: space-between;">
<span>0%</span>
<span>45%</span>
<span>100%</span>
</div>
</div>
""")
# Footer
gr.HTML("""
<div class="footer">
<p>Vision 2030 Assistant • Powered by ALLaM-7B-Instruct • © 2025</p>
</div>
""")
# JavaScript for animations and enhanced UI effects
demo.load(js="""
function setupThinking() {
const thinking = document.getElementById('thinking');
function animateThinking() {
if (thinking) {
thinking.style.display = 'block';
let dots = '.';
setInterval(() => {
dots = dots.length < 3 ? dots + '.' : '.';
thinking.innerHTML = `<div class="status-indicator">🤔 The assistant is thinking${dots}</div>`;
}, 500);
}
}
// Demo code to show the thinking animation
document.querySelectorAll('button').forEach(btn => {
if (btn.textContent.includes('Send')) {
btn.addEventListener('click', () => {
setTimeout(() => {
animateThinking();
}, 100);
});
}
});
}
// Run setup when page loads
if (document.readyState === 'complete') {
setupThinking();
} else {
window.addEventListener('load', setupThinking);
}
""")
# Event handlers
@spaces.GPU
def respond(message, history):
if not message:
return history, ""
# Set thinking indicator
time.sleep(0.5) # Simulate thinking time
response, sources = service.answer_question(message)
sources_text = ", ".join(sources) if sources else "No specific sources"
# Format the response to include sources
full_response = f"{response}\n\nSources: {sources_text}"
return history + [[message, full_response]], ""
def reset_chat():
service.reset_conversation()
return [], "Conversation history has been reset."
@spaces.GPU
def initialize_system():
success = service.initialize()
# Update system status indicator with styled HTML
if success:
status_html = '<div class="status-indicator success">✅ System initialized and ready</div>'
return "System initialized successfully!", status_html
else:
status_html = '<div class="status-indicator error">❌ System initialization failed</div>'
return "System initialization failed. Check logs for details.", status_html
def use_sample_question(question):
return question
def check_pdfs():
result = []
for pdf_file in ["saudi_vision203.pdf", "saudi_vision2030_ar.pdf"]:
if os.path.exists(pdf_file):
size = os.path.getsize(pdf_file) / (1024 * 1024) # Size in MB
result.append([pdf_file, "Found ✅", f"{size:.2f} MB"])
else:
result.append([pdf_file, "Not found ❌", "0 MB"])
return result
@spaces.GPU
def check_dependencies():
result = []
# Safe imports inside GPU-decorated function
try:
import torch
result.append(["PyTorch", f"✅ {torch.__version__}"])
except ImportError:
result.append(["PyTorch", "❌ Not installed"])
try:
import transformers
result.append(["Transformers", f"✅ {transformers.__version__}"])
except ImportError:
result.append(["Transformers", "❌ Not installed"])
try:
import langchain
result.append(["LangChain", f"✅ {langchain.__version__}"])
except ImportError:
result.append(["LangChain", "❌ Not installed"])
try:
import faiss
result.append(["FAISS", "✅ Installed"])
except ImportError:
result.append(["FAISS", "❌ Not installed"])
return result
# Connect event handlers
msg.submit(respond, [msg, chatbot], [chatbot, msg])
submit_btn.click(respond, [msg, chatbot], [chatbot, msg])
clear.click(reset_chat, None, [chatbot, msg])
init_btn.click(initialize_system, None, [status_box, system_status])
# Connect all sample question buttons to the message input
q1_btn.click(lambda: "What is Saudi Vision 2030?", None, msg)
q2_btn.click(lambda: "What are the economic goals of Vision 2030?", None, msg)
q3_btn.click(lambda: "How does Vision 2030 aim to improve quality of life?", None, msg)
q4_btn.click(lambda: "ما هي رؤية السعودية 2030؟", None, msg)
q5_btn.click(lambda: "ما هي الأهداف الاقتصادية لرؤية 2030؟", None, msg)
q6_btn.click(lambda: "كيف تعزز رؤية 2030 الإرث الثقافي السعودي؟", None, msg)
pdf_btn.click(check_pdfs, None, pdf_status)
sys_btn.click(check_dependencies, None, sys_status)
# Initialize system on page load
demo.load(initialize_system, None, [status_box, system_status])
return demo
if __name__ == "__main__":
demo = main()
demo.queue()
demo.launch() |