File size: 13,794 Bytes
f876753
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
import os
from dataclasses import dataclass, field

import numpy as np
import torch
import torch.nn as nn
import torch.nn.functional as F

from jaxtyping import Float
from torch import Tensor
from typing import *

from ...utils.general_utils import contract_to_unisphere_custom, sample_from_planes
from diffusers import StableDiffusionPipeline, AutoencoderKL, UNet2DConditionModel

from ..networks import get_mlp
from ...utils.general_utils import config_to_primitive
@dataclass
class StableDiffusionTriplaneDualAttentionConfig:
    n_feature_dims: int = 3
    space_generator_config: dict = field(
        default_factory=lambda: {
            "pretrained_model_name_or_path": "stable-diffusion-2-1-base",
            "training_type": "self_lora_rank_16-cross_lora_rank_16-locon_rank_16",
            "output_dim": 32,
            "gradient_checkpoint": False,
            "self_lora_type": "hexa_v1",
            "cross_lora_type": "hexa_v1",
            "locon_type": "vanilla_v1",

        }
    )

    mlp_network_config: dict = field(
        default_factory=lambda: {
            "otype": "VanillaMLP",
            "activation": "ReLU",
            "output_activation": "none",
            "n_neurons": 64,
            "n_hidden_layers": 2,
        }
    )

    backbone: str = "one_step_triplane_dual_stable_diffusion"
    finite_difference_normal_eps: Union[
        float, str
    ] = 0.01  # in [float, "progressive"]    finite_difference_normal_eps: Union[float, str] = 0.01
    sdf_bias: Union[float, str] = 0.0
    sdf_bias_params: Optional[Any] = None

    isosurface_remove_outliers: bool = False
    # rotate planes to fit the conventional direction of image generated by SD
    # in right-handed coordinate system 
    # xy plane should looks that a img from top-down / bottom-up view
    # xz plane should looks that a img from right-left / left-right view
    # yz plane should looks that a img from front-back / back-front view
    rotate_planes: Optional[str] = None
    split_channels: Optional[str] = None

    geo_interpolate: str = "v1"
    tex_interpolate: str = "v1"

    isosurface_deformable_grid: bool = True


class StableDiffusionTriplaneDualAttention(nn.Module):
    def __init__(
        self, 
        config: StableDiffusionTriplaneDualAttentionConfig,
        vae: AutoencoderKL,
        unet: UNet2DConditionModel,
    ):
        super().__init__()
        
        self.cfg = StableDiffusionTriplaneDualAttentionConfig(**config) if isinstance(config, dict) else config
        
        # set up the space generator
        from ...extern.sd_dual_triplane_modules import OneStepTriplaneDualStableDiffusion as Generator
        self.space_generator = Generator(
            self.cfg.space_generator_config,
            vae=vae,
            unet=unet,
        )

        input_dim = self.space_generator.output_dim # feat_xy + feat_xz + feat_yz
        assert self.cfg.split_channels in [None, "v1"]
        if self.cfg.split_channels in ["v1"]: # split geometry and texture
            input_dim = input_dim // 2

        assert self.cfg.geo_interpolate in ["v1", "v2"]
        if self.cfg.geo_interpolate in ["v2"]: 
            geo_input_dim = input_dim * 3 # concat[feat_xy, feat_xz, feat_yz]
        else:
            geo_input_dim = input_dim # feat_xy + feat_xz + feat_yz   

        assert self.cfg.tex_interpolate in ["v1", "v2"]
        if self.cfg.tex_interpolate in ["v2"]:
            tex_input_dim = input_dim * 3 # concat[feat_xy, feat_xz, feat_yz]
        else:
            tex_input_dim = input_dim # feat_xy + feat_xz + feat_yz

        self.sdf_network = get_mlp(
            geo_input_dim,
            1,
            self.cfg.mlp_network_config,
        )
        if self.cfg.n_feature_dims > 0:

            self.feature_network = get_mlp(
                tex_input_dim,
                self.cfg.n_feature_dims,
                self.cfg.mlp_network_config,
            )

        if self.cfg.isosurface_deformable_grid:
            self.deformation_network = get_mlp(
                geo_input_dim,
                3,
                self.cfg.mlp_network_config,
            )

        # hard-coded for now
        self.unbounded = False
        radius = 1.0
        
        self.register_buffer(
            "bbox",
            torch.as_tensor(
                [
                    [-radius, -radius, -radius],
                    [radius, radius, radius],
                ],
                dtype=torch.float32,
            )
        )

    def initialize_shape(self) -> None:
        # not used
        pass

    def get_shifted_sdf(
        self, 
        points: Float[Tensor, "*N Di"], 
        sdf: Float[Tensor, "*N 1"]
    ) -> Float[Tensor, "*N 1"]:
        sdf_bias: Union[float, Float[Tensor, "*N 1"]]
        if self.cfg.sdf_bias == "ellipsoid":
            assert (
                isinstance(self.cfg.sdf_bias_params, Sized)
                and len(self.cfg.sdf_bias_params) == 3
            )
            size = torch.as_tensor(self.cfg.sdf_bias_params).to(points)
            sdf_bias = ((points / size) ** 2).sum(
                dim=-1, keepdim=True
            ).sqrt() - 1.0  # pseudo signed distance of an ellipsoid
        elif self.cfg.sdf_bias == "sphere":
            assert isinstance(self.cfg.sdf_bias_params, float)
            radius = self.cfg.sdf_bias_params
            sdf_bias = (points**2).sum(dim=-1, keepdim=True).sqrt() - radius
        elif isinstance(self.cfg.sdf_bias, float):
            sdf_bias = self.cfg.sdf_bias
        else:
            raise ValueError(f"Unknown sdf bias {self.cfg.sdf_bias}")
        return sdf + sdf_bias

    def generate_space_cache(
        self,
        styles: Float[Tensor, "B Z"],
        text_embed: Float[Tensor, "B C"],
    ) -> Any:
        output = self.space_generator(
            text_embed = text_embed,
            styles = styles,
        )
        return output
    
    def denoise(
        self,
        noisy_input: Any,
        text_embed: Float[Tensor, "B C"],
        timestep
    ) -> Any:
        output = self.space_generator.forward_denoise(
            text_embed = text_embed,
            noisy_input = noisy_input,
            t = timestep
        )
        return output

    def decode(
        self,
        latents: Any,
    ) -> Any:
        triplane = self.space_generator.forward_decode(
            latents = latents
        )
        if self.cfg.split_channels == None:
            return triplane
        elif self.cfg.split_channels == "v1":
            B, _, C, H, W = triplane.shape
            # geometry triplane uses the first n_feature_dims // 2 channels
            # texture triplane uses the last n_feature_dims // 2 channels
            used_indices_geo = torch.tensor([True] * (self.space_generator.output_dim// 2) + [False] * (self.space_generator.output_dim // 2))
            used_indices_tex = torch.tensor([False] * (self.space_generator.output_dim // 2) + [True] * (self.space_generator.output_dim // 2))
            used_indices = torch.stack([used_indices_geo] * 3 + [used_indices_tex] * 3, dim=0).to(triplane.device)
            return triplane[:, used_indices].view(B, 6, C//2, H, W)

    def interpolate_encodings(
        self,
        points: Float[Tensor, "*N Di"],
        space_cache: Float[Tensor, "B 3 C//3 H W"],
        only_geo: bool = False,
    ):
        batch_size, n_points, n_dims = points.shape
        # the following code is similar to EG3D / OpenLRM
        
        assert self.cfg.rotate_planes in [None, "v1", "v2"]

        if self.cfg.rotate_planes == None:
            raise NotImplementedError("rotate_planes == None is not implemented yet.")

        space_cache_rotated = torch.zeros_like(space_cache)
        if self.cfg.rotate_planes == "v1":
            # xy plane, diagonal-wise
            space_cache_rotated[:, 0::3] = torch.transpose(
                space_cache[:, 0::3], 3, 4
            )
            # xz plane, rotate 180° counterclockwise
            space_cache_rotated[:, 1::3] = torch.rot90(
                space_cache[:, 1::3], k=2, dims=(3, 4)
            )
            # zy plane, rotate 90° clockwise
            space_cache_rotated[:, 2::3] = torch.rot90(
                space_cache[:, 2::3], k=-1, dims=(3, 4)
            )
        elif self.cfg.rotate_planes == "v2":
            # all are the same as v1, except for the xy plane
            # xy plane, row-wise flip
            space_cache_rotated[:, 0::3] = torch.flip(
                space_cache[:, 0::3], dims=(4,)
            )
            # xz plane, rotate 180° counterclockwise
            space_cache_rotated[:, 1::3] = torch.rot90(
                space_cache[:, 1::3], k=2, dims=(3, 4)
            )
            # zy plane, rotate 90° clockwise
            space_cache_rotated[:, 2::3] = torch.rot90(
                space_cache[:, 2::3], k=-1, dims=(3, 4)
            )


        # the 0, 1, 2 axis of the space_cache_rotated is for geometry
        geo_feat = sample_from_planes(
            plane_features = space_cache_rotated[:, 0:3].contiguous(),
            coordinates = points,
            interpolate_feat = self.cfg.geo_interpolate
        ).view(*points.shape[:-1],-1)

        if only_geo:
            return geo_feat
        else:
            # the 3, 4, 5 axis of the space_cache is for texture
            tex_feat = sample_from_planes(
                plane_features = space_cache_rotated[:, 3:6].contiguous(),
                coordinates = points,
                interpolate_feat = self.cfg.tex_interpolate
            ).view(*points.shape[:-1],-1)

            return geo_feat, tex_feat


    def rescale_points(
        self,
        points: Float[Tensor, "*N Di"],
    ):
        # transform points from original space to [-1, 1]^3
        points = contract_to_unisphere_custom(
            points, 
            self.bbox, 
            self.unbounded
        )
        return points

    def forward(
        self,
        points: Float[Tensor, "*N Di"],
        space_cache: Any,
    ) -> Dict[str, Float[Tensor, "..."]]:
        batch_size, n_points, n_dims = points.shape

        points_unscaled = points
        points = self.rescale_points(points)

        enc_geo, enc_tex = self.interpolate_encodings(points, space_cache)
        sdf_orig = self.sdf_network(enc_geo).view(*points.shape[:-1], 1)
        sdf = self.get_shifted_sdf(points_unscaled, sdf_orig)
        output = {
                "sdf": sdf.view(batch_size * n_points, 1), # reshape to [B*N, 1]
        }
        if self.cfg.n_feature_dims > 0:
            features = self.feature_network(enc_tex).view(
                *points.shape[:-1], self.cfg.n_feature_dims)
            output.update(
                {
                    "features": features.view(batch_size * n_points, self.cfg.n_feature_dims)
                }
            )
        return output

    def forward_sdf(
        self,
        points: Float[Tensor, "*N Di"],
        space_cache: Float[Tensor, "B 3 C//3 H W"],
    ) -> Float[Tensor, "*N 1"]:
        batch_size = points.shape[0]
        assert points.shape[0] == batch_size, "points and space_cache should have the same batch size in forward_sdf"
        points_unscaled = points

        points = self.rescale_points(points)

        # sample from planes
        enc_geo = self.interpolate_encodings(
            points.reshape(batch_size, -1, 3),
            space_cache,
            only_geo = True
        ).reshape(*points.shape[:-1], -1)
        sdf = self.sdf_network(enc_geo).reshape(*points.shape[:-1], 1)

        sdf = self.get_shifted_sdf(points_unscaled, sdf)
        return sdf

    def forward_field(
        self, 
        points: Float[Tensor, "*N Di"],
        space_cache: Float[Tensor, "B 3 C//3 H W"],
    ) -> Tuple[Float[Tensor, "*N 1"], Optional[Float[Tensor, "*N 3"]]]:
        batch_size = points.shape[0]
        assert points.shape[0] == batch_size, "points and space_cache should have the same batch size in forward_sdf"
        points_unscaled = points

        points = self.rescale_points(points)

        # sample from planes
        enc_geo = self.interpolate_encodings(points, space_cache, only_geo = True)   
        sdf = self.sdf_network(enc_geo).reshape(*points.shape[:-1], 1)
        sdf = self.get_shifted_sdf(points_unscaled, sdf)
        deformation: Optional[Float[Tensor, "*N 3"]] = None
        if self.cfg.isosurface_deformable_grid:
            deformation = self.deformation_network(enc_geo).reshape(*points.shape[:-1], 3)
        return sdf, deformation

    def forward_level(
        self, field: Float[Tensor, "*N 1"], threshold: float
    ) -> Float[Tensor, "*N 1"]:
        # TODO: is this function correct?
        return field - threshold

    def export(
        self, 
        points: Float[Tensor, "*N Di"], 
        space_cache: Float[Tensor, "B 3 C//3 H W"],
    **kwargs) -> Dict[str, Any]:
    
        # TODO: is this function correct?
        out: Dict[str, Any] = {}
        if self.cfg.n_feature_dims == 0:
            return out

        orig_shape = points.shape
        points = points.view(1, -1, 3)

        # assume the batch size is 1
        points_unscaled = points
        points = self.rescale_points(points)

        # sample from planes
        _, enc_tex = self.interpolate_encodings(points, space_cache)
        features = self.feature_network(enc_tex).view(
            *points.shape[:-1], self.cfg.n_feature_dims
        )
        out.update(
            {
                "features": features.view(orig_shape[:-1] + (self.cfg.n_feature_dims,)) 
            }
        )
        return out
    
    def train(self, mode=True):
        super().train(mode)
        self.space_generator.train(mode)

    def eval(self):
        super().eval()
        self.space_generator.eval()