File size: 22,785 Bytes
8ab1cf8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
import gc
import platform
import os
import subprocess as sp
import gradio as gr
import json 
import torch
import torchaudio

from aeiou.viz import audio_spectrogram_image
from einops import rearrange
from safetensors.torch import load_file
from torch.nn import functional as F
from torchaudio import transforms as T

from ..inference.generation import generate_diffusion_cond, generate_diffusion_uncond
from ..models.factory import create_model_from_config
from ..models.pretrained import get_pretrained_model
from ..models.utils import load_ckpt_state_dict
from ..inference.utils import prepare_audio
from ..training.utils import copy_state_dict
from ..data.utils import read_video, merge_video_audio


import os
os.environ["TOKENIZERS_PARALLELISM"] = "false"

import warnings
warnings.filterwarnings("ignore", category=UserWarning)


device = torch.device("cpu")

os.environ['TMPDIR'] = './tmp'

current_model_name = None
current_model = None
current_sample_rate = None
current_sample_size = None



def load_model(model_name, model_config=None, model_ckpt_path=None, pretrained_name=None, pretransform_ckpt_path=None, device="cuda", model_half=False):
    global model_configurations
    
    if pretrained_name is not None:
        print(f"Loading pretrained model {pretrained_name}")
        model, model_config = get_pretrained_model(pretrained_name)
    elif model_config is not None and model_ckpt_path is not None:
        print(f"Creating model from config")
        model = create_model_from_config(model_config)
        print(f"Loading model checkpoint from {model_ckpt_path}")
        copy_state_dict(model, load_ckpt_state_dict(model_ckpt_path))
    sample_rate = model_config["sample_rate"]
    sample_size = model_config["sample_size"]
    if pretransform_ckpt_path is not None:
        print(f"Loading pretransform checkpoint from {pretransform_ckpt_path}")
        model.pretransform.load_state_dict(load_ckpt_state_dict(pretransform_ckpt_path), strict=False)
        print(f"Done loading pretransform")
    model.to(device).eval().requires_grad_(False)
    if model_half:
        model.to(torch.float16)
    print(f"Done loading model")
    return model, model_config, sample_rate, sample_size

def load_and_process_audio(audio_path, sample_rate, seconds_start, seconds_total):
    if audio_path is None:
        return torch.zeros((2, int(sample_rate * seconds_total)))
    audio_tensor, sr = torchaudio.load(audio_path)
    start_index = int(sample_rate * seconds_start)
    target_length = int(sample_rate * seconds_total)
    end_index = start_index + target_length
    audio_tensor = audio_tensor[:, start_index:end_index]
    if audio_tensor.shape[1] < target_length:
        pad_length = target_length - audio_tensor.shape[1]
        audio_tensor = F.pad(audio_tensor, (pad_length, 0))
    return audio_tensor

def generate_cond(
        prompt,
        negative_prompt=None,
        video_file=None,
        video_path=None,
        audio_prompt_file=None,
        audio_prompt_path=None,
        seconds_start=0,
        seconds_total=10,
        cfg_scale=6.0,
        steps=250,
        preview_every=None,
        seed=-1,
        sampler_type="dpmpp-3m-sde",
        sigma_min=0.03,
        sigma_max=1000,
        cfg_rescale=0.0,
        use_init=False,
        init_audio=None,
        init_noise_level=1.0,
        mask_cropfrom=None,
        mask_pastefrom=None,
        mask_pasteto=None,
        mask_maskstart=None,
        mask_maskend=None,
        mask_softnessL=None,
        mask_softnessR=None,
        mask_marination=None,
        batch_size=1
    ):
    if torch.cuda.is_available():
        torch.cuda.empty_cache()
    gc.collect()
    print(f"Prompt: {prompt}")
    preview_images = []
    if preview_every == 0:
        preview_every = None

    try:
        has_mps = platform.system() == "Darwin" and torch.backends.mps.is_available()
    except Exception:
        has_mps = False
    if has_mps:
        device = torch.device("mps")
    elif torch.cuda.is_available():
        device = torch.device("cuda")
    else:
        device = torch.device("cpu")
    model_name = 'default'
    cfg = model_configurations[model_name]
    model_config_path = cfg.get("model_config")
    ckpt_path = cfg.get("ckpt_path")
    pretrained_name = cfg.get("pretrained_name")
    pretransform_ckpt_path = cfg.get("pretransform_ckpt_path")
    model_type = cfg.get("model_type", "diffusion_cond")
    if model_config_path:
        with open(model_config_path) as f:
            model_config = json.load(f)
    else:
        model_config = None
    target_fps = model_config.get("video_fps", 5)
    global current_model_name, current_model, current_sample_rate, current_sample_size
    if current_model is None or model_name != current_model_name:
        current_model, model_config, sample_rate, sample_size = load_model(
            model_name=model_name,
            model_config=model_config,
            model_ckpt_path=ckpt_path,
            pretrained_name=pretrained_name,
            pretransform_ckpt_path=pretransform_ckpt_path,
            device=device,
            model_half=False
        )
        current_model_name = model_name
        model = current_model
        current_sample_rate = sample_rate
        current_sample_size = sample_size
    else:
        model = current_model
        sample_rate = current_sample_rate
        sample_size = current_sample_size
    if video_file is not None:
        video_path = video_file.name
    elif video_path:
        video_path = video_path.strip()
    else:
        video_path = None
        
    if audio_prompt_file is not None:
        print(f'audio_prompt_file: {audio_prompt_file}')
        audio_path = audio_prompt_file.name
    elif audio_prompt_path:
        audio_path = audio_prompt_path.strip()
    else:
        audio_path = None
    
    Video_tensors = read_video(video_path, seek_time=seconds_start, duration=seconds_total, target_fps=target_fps)        
    audio_tensor = load_and_process_audio(audio_path, sample_rate, seconds_start, seconds_total)
    
    audio_tensor = audio_tensor.to(device)
    seconds_input = sample_size / sample_rate
    print(f'video_path: {video_path}')
    
    if not prompt:
        prompt = ""
        
    conditioning = [{
        "video_prompt": [Video_tensors.unsqueeze(0)],        
        "text_prompt": prompt,
        "audio_prompt": audio_tensor.unsqueeze(0),
        "seconds_start": seconds_start,
        "seconds_total": seconds_input
    }] * batch_size
    if negative_prompt:
        negative_conditioning = [{
            "video_prompt": [Video_tensors.unsqueeze(0)],        
            "text_prompt": negative_prompt,
            "audio_prompt": audio_tensor.unsqueeze(0),
            "seconds_start": seconds_start,
            "seconds_total": seconds_total
        }] * batch_size
    else:
        negative_conditioning = None
    try:
        device = next(model.parameters()).device 
    except Exception as e:
        device = next(current_model.parameters()).device
    seed = int(seed)
    if not use_init:
        init_audio = None
    input_sample_size = sample_size
    if init_audio is not None:
        in_sr, init_audio = init_audio
        init_audio = torch.from_numpy(init_audio).float().div(32767)
        if init_audio.dim() == 1:
            init_audio = init_audio.unsqueeze(0)
        elif init_audio.dim() == 2:
            init_audio = init_audio.transpose(0, 1)
        if in_sr != sample_rate:
            resample_tf = T.Resample(in_sr, sample_rate).to(init_audio.device)
            init_audio = resample_tf(init_audio)
        audio_length = init_audio.shape[-1]
        if audio_length > sample_size:
            input_sample_size = audio_length + (model.min_input_length - (audio_length % model.min_input_length)) % model.min_input_length
        init_audio = (sample_rate, init_audio)
    def progress_callback(callback_info):
        nonlocal preview_images
        denoised = callback_info["denoised"]
        current_step = callback_info["i"]
        sigma = callback_info["sigma"]
        if (current_step - 1) % preview_every == 0:
            if model.pretransform is not None:
                denoised = model.pretransform.decode(denoised)
            denoised = rearrange(denoised, "b d n -> d (b n)")
            denoised = denoised.clamp(-1, 1).mul(32767).to(torch.int16).cpu()
            audio_spectrogram = audio_spectrogram_image(denoised, sample_rate=sample_rate)
            preview_images.append((audio_spectrogram, f"Step {current_step} sigma={sigma:.3f})"))
    if mask_cropfrom is not None: 
        mask_args = {
            "cropfrom": mask_cropfrom,
            "pastefrom": mask_pastefrom,
            "pasteto": mask_pasteto,
            "maskstart": mask_maskstart,
            "maskend": mask_maskend,
            "softnessL": mask_softnessL,
            "softnessR": mask_softnessR,
            "marination": mask_marination,
        }
    else:
        mask_args = None 
    if model_type == "diffusion_cond":
        audio = generate_diffusion_cond(
            model, 
            conditioning=conditioning,
            negative_conditioning=negative_conditioning,
            steps=steps,
            cfg_scale=cfg_scale,
            batch_size=batch_size,
            sample_size=input_sample_size,
            sample_rate=sample_rate,
            seed=seed,
            device=device,
            sampler_type=sampler_type,
            sigma_min=sigma_min,
            sigma_max=sigma_max,
            init_audio=init_audio,
            init_noise_level=init_noise_level,
            mask_args=mask_args,
            callback=progress_callback if preview_every is not None else None,
            scale_phi=cfg_rescale
        )
    elif model_type == "diffusion_uncond":
        audio = generate_diffusion_uncond(
            model, 
            steps=steps,
            batch_size=batch_size,
            sample_size=input_sample_size,
            seed=seed,
            device=device,
            sampler_type=sampler_type,
            sigma_min=sigma_min,
            sigma_max=sigma_max,
            init_audio=init_audio,
            init_noise_level=init_noise_level,
            callback=progress_callback if preview_every is not None else None
        )
    else:
        raise ValueError(f"Unsupported model type: {model_type}")
    audio = rearrange(audio, "b d n -> d (b n)")
    audio = audio.to(torch.float32).div(torch.max(torch.abs(audio))).clamp(-1, 1).mul(32767).to(torch.int16).cpu()
    file_name = os.path.basename(video_path) if video_path else "output"
    output_dir = f"demo_result"
    if not os.path.exists(output_dir):
        os.makedirs(output_dir)
    output_video_path = f"{output_dir}/{file_name}"
    torchaudio.save(f"{output_dir}/output.wav", audio, sample_rate)
    if not os.path.exists(output_dir):
        os.makedirs(output_dir)
    if video_path:
        merge_video_audio(video_path, f"{output_dir}/output.wav", output_video_path, seconds_start, seconds_total)
    audio_spectrogram = audio_spectrogram_image(audio, sample_rate=sample_rate)
    del video_path
    torch.cuda.empty_cache()
    gc.collect()
    return (output_video_path, f"{output_dir}/output.wav")

def toggle_custom_model(selected_model):
    return gr.Row.update(visible=(selected_model == "Custom Model"))

def create_sampling_ui(model_config_map, inpainting=False):
    with gr.Blocks() as demo:
        gr.Markdown(
            """
            # 🎧AudioX: Diffusion Transformer for Anything-to-Audio Generation  
            **[Project Page](https://zeyuet.github.io/AudioX/) · [Huggingface](https://huggingface.co./Zeyue7/AudioX) · [GitHub](https://github.com/ZeyueT/AudioX)**
            """
        )

        with gr.Tab("Generation"):

            with gr.Row():
                with gr.Column():
                    prompt = gr.Textbox(show_label=False, placeholder="Enter your prompt")
                    negative_prompt = gr.Textbox(show_label=False, placeholder="Negative prompt", visible=False)
                    video_path = gr.Textbox(label="Video Path", placeholder="Enter video file path")
                    video_file = gr.File(label="Upload Video File")
                    audio_prompt_file = gr.File(label="Upload Audio Prompt File", visible=False)
                    audio_prompt_path = gr.Textbox(label="Audio Prompt Path", placeholder="Enter audio file path", visible=False)
            with gr.Row():
                with gr.Column(scale=6):
                    with gr.Accordion("Video Params", open=False):                
                        seconds_start_slider = gr.Slider(minimum=0, maximum=512, step=1, value=0, label="Video Seconds Start")
                        seconds_total_slider = gr.Slider(minimum=0, maximum=10, step=1, value=10, label="Seconds Total", interactive=False)
            with gr.Row():
                with gr.Column(scale=4):
                    with gr.Accordion("Sampler Params", open=False):
                        steps_slider = gr.Slider(minimum=1, maximum=500, step=1, value=100, label="Steps")
                        preview_every_slider = gr.Slider(minimum=0, maximum=100, step=1, value=0, label="Preview Every")
                        cfg_scale_slider = gr.Slider(minimum=0.0, maximum=25.0, step=0.1, value=7.0, label="CFG Scale")
                        seed_textbox = gr.Textbox(label="Seed (set to -1 for random seed)", value="-1")
                        sampler_type_dropdown = gr.Dropdown(
                            ["dpmpp-2m-sde", "dpmpp-3m-sde", "k-heun", "k-lms", "k-dpmpp-2s-ancestral", "k-dpm-2", "k-dpm-fast"],
                            label="Sampler Type",
                            value="dpmpp-3m-sde"
                        )
                        sigma_min_slider = gr.Slider(minimum=0.0, maximum=2.0, step=0.01, value=0.03, label="Sigma Min")
                        sigma_max_slider = gr.Slider(minimum=0.0, maximum=1000.0, step=0.1, value=500, label="Sigma Max")
                        cfg_rescale_slider = gr.Slider(minimum=0.0, maximum=1, step=0.01, value=0.0, label="CFG Rescale Amount")
            with gr.Row():
                with gr.Column(scale=4):
                    with gr.Accordion("Init Audio", open=False, visible=False):
                        init_audio_checkbox = gr.Checkbox(label="Use Init Audio")
                        init_audio_input = gr.Audio(label="Init Audio")
                        init_noise_level_slider = gr.Slider(minimum=0.1, maximum=100.0, step=0.01, value=0.1, label="Init Noise Level")
            gr.Markdown("## Examples")
            with gr.Accordion("Click to show examples", open=False):
                with gr.Row():
                    gr.Markdown("**📝 Task: Text-to-Audio**")                
                    with gr.Column(scale=1.2):
                        gr.Markdown("Prompt: *Typing on a keyboard*")
                        ex1 = gr.Button("Load Example")
                    with gr.Column(scale=1.2):
                        gr.Markdown("Prompt: *Ocean waves crashing*")
                        ex2 = gr.Button("Load Example")
                    with gr.Column(scale=1.2):
                        gr.Markdown("Prompt: *Footsteps in snow*")
                        ex3 = gr.Button("Load Example")
                with gr.Row():
                    gr.Markdown("**🎶 Task: Text-to-Music**")                
                    with gr.Column(scale=1.2):
                        gr.Markdown("Prompt: *An orchestral music piece for a fantasy world.*")
                        ex4 = gr.Button("Load Example")
                    with gr.Column(scale=1.2):
                        gr.Markdown("Prompt: *Produce upbeat electronic music for a dance party*")
                        ex5 = gr.Button("Load Example")
                    with gr.Column(scale=1.2):
                        gr.Markdown("Prompt: *A dreamy lo-fi beat with vinyl crackle*")
                        ex6 = gr.Button("Load Example")
                with gr.Row():
                    gr.Markdown("**🎬 Task: Video-to-Audio**\nPrompt: *Generate general audio for the video*")
                    with gr.Column(scale=1.2):
                        gr.Video("example/V2A_sample-1.mp4")
                        ex7 = gr.Button("Load Example")
                    with gr.Column(scale=1.2):
                        gr.Video("example/V2A_sample-2.mp4")
                        ex8 = gr.Button("Load Example")
                    with gr.Column(scale=1.2):
                        gr.Video("example/V2A_sample-3.mp4")
                        ex9 = gr.Button("Load Example")
                with gr.Row():
                    gr.Markdown("**🎵 Task: Video-to-Music**\nPrompt: *Generate music for the video*")                
                    with gr.Column(scale=1.2):
                        gr.Video("example/V2M_sample-1.mp4")
                        ex10 = gr.Button("Load Example")
                    with gr.Column(scale=1.2):
                        gr.Video("example/V2M_sample-2.mp4")
                        ex11 = gr.Button("Load Example")
                    with gr.Column(scale=1.2):
                        gr.Video("example/V2M_sample-3.mp4")
                        ex12 = gr.Button("Load Example")
            with gr.Row():
                generate_button = gr.Button("Generate", variant='primary', scale=1)
            with gr.Row():
                with gr.Column(scale=6):
                    video_output = gr.Video(label="Output Video", interactive=False)
                    audio_output = gr.Audio(label="Output Audio", interactive=False)
                    send_to_init_button = gr.Button("Send to Init Audio", scale=1, visible=False)
            send_to_init_button.click(
                fn=lambda audio: audio,
                inputs=[audio_output],
                outputs=[init_audio_input]
            )
            inputs = [
                prompt, 
                negative_prompt,
                video_file,
                video_path,
                audio_prompt_file,
                audio_prompt_path,
                seconds_start_slider, 
                seconds_total_slider, 
                cfg_scale_slider, 
                steps_slider, 
                preview_every_slider, 
                seed_textbox, 
                sampler_type_dropdown, 
                sigma_min_slider, 
                sigma_max_slider,
                cfg_rescale_slider,
                init_audio_checkbox,
                init_audio_input,
                init_noise_level_slider
            ]
            generate_button.click(
                fn=generate_cond, 
                inputs=inputs,
                outputs=[
                    video_output,
                    audio_output
                ], 
                api_name="generate"
            ) 
            ex1.click(lambda: ["Typing on a keyboard", None, None, None, None, None, 0, 10, 7.0, 100, 0, "1225575558", "dpmpp-3m-sde", 0.03, 500, 0.0, False, None, 0.1], inputs=[], outputs=inputs)
            ex2.click(lambda: ["Ocean waves crashing", None, None, None, None, None, 0, 10, 7.0, 100, 0, "3615819170", "dpmpp-3m-sde", 0.03, 500, 0.0, False, None, 0.1], inputs=[], outputs=inputs)
            ex3.click(lambda: ["Footsteps in snow", None, None, None, None, None, 0, 10, 7.0, 100, 0, "1703896811", "dpmpp-3m-sde", 0.03, 500, 0.0, False, None, 0.1], inputs=[], outputs=inputs)
            ex4.click(lambda: ["An orchestral music piece for a fantasy world.", None, None, None, None, None, 0, 10, 7.0, 100, 0, "1561898939", "dpmpp-3m-sde", 0.03, 500, 0.0, False, None, 0.1], inputs=[], outputs=inputs)
            ex5.click(lambda: ["Produce upbeat electronic music for a dance party", None, None, None, None, None, 0, 10, 7.0, 100, 0, "406022999", "dpmpp-3m-sde", 0.03, 500, 0.0, False, None, 0.1], inputs=[], outputs=inputs)
            ex6.click(lambda: ["A dreamy lo-fi beat with vinyl crackle", None, None, None, None, None, 0, 10, 7.0, 100, 0, "807934770", "dpmpp-3m-sde", 0.03, 500, 0.0, False, None, 0.1], inputs=[], outputs=inputs)
            ex7.click(lambda: ["Generate general audio for the video", None, None, "example/V2A_sample-1.mp4", None, None, 0, 10, 7.0, 100, 0, "3737819478", "dpmpp-3m-sde", 0.03, 500, 0.0, False, None, 0.1], inputs=[], outputs=inputs)
            ex8.click(lambda: ["Generate general audio for the video", None, None, "example/V2A_sample-2.mp4", None, None, 0, 10, 7.0, 100, 0, "1900718499", "dpmpp-3m-sde", 0.03, 500, 0.0, False, None, 0.1], inputs=[], outputs=inputs)
            ex9.click(lambda: ["Generate general audio for the video", None, None, "example/V2A_sample-3.mp4", None, None, 0, 10, 7.0, 100, 0, "2289822202", "dpmpp-3m-sde", 0.03, 500, 0.0, False, None, 0.1], inputs=[], outputs=inputs)
            ex10.click(lambda: ["Generate music for the video", None, None, "example/V2M_sample-1.mp4", None, None, 0, 10, 7.0, 100, 0, "3498087420", "dpmpp-3m-sde", 0.03, 500, 0.0, False, None, 0.1], inputs=[], outputs=inputs)
            ex11.click(lambda: ["Generate music for the video", None, None, "example/V2M_sample-2.mp4", None, None, 0, 10, 7.0, 100, 0, "3753837734", "dpmpp-3m-sde", 0.03, 500, 0.0, False, None, 0.1], inputs=[], outputs=inputs)
            ex12.click(lambda: ["Generate music for the video", None, None, "example/V2M_sample-3.mp4", None, None, 0, 10, 7.0, 100, 0, "3510832996", "dpmpp-3m-sde", 0.03, 500, 0.0, False, None, 0.1], inputs=[], outputs=inputs)
        return demo

def create_txt2audio_ui(model_config_map):
    with gr.Blocks(css=".gradio-container { max-width: 1120px; margin: auto; }") as ui:
        with gr.Tab("Generation"):
            create_sampling_ui(model_config_map)
    return ui

def toggle_custom_model(selected_model):
    return gr.Row.update(visible=(selected_model == "Custom Model"))

def create_ui(model_config_path=None, ckpt_path=None, pretrained_name=None, pretransform_ckpt_path=None, model_half=False):
    global model_configurations
    global device

    try:
        has_mps = platform.system() == "Darwin" and torch.backends.mps.is_available()
    except Exception:
        has_mps = False

    if has_mps:
        device = torch.device("mps")
    elif torch.cuda.is_available():
        device = torch.device("cuda")
    else:
        device = torch.device("cpu")

    print("Using device:", device)

    model_configurations = {
        "default": {
            "model_config": "./model/config.json",
            "ckpt_path": "./model/model.ckpt"
        }
    }
    ui = create_txt2audio_ui(model_configurations)
    return ui

if __name__ == "__main__":
    ui = create_ui(
        model_config_path='./model/config.json',
        share=True
    )
    ui.launch()