File size: 14,483 Bytes
8ab1cf8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
import spaces
import gradio as gr
import torch
import torchaudio
import os
from einops import rearrange
import gc
import spaces
import gradio as gr
import torch
import torchaudio
import os
from einops import rearrange
from stable_audio_tools import get_pretrained_model
from stable_audio_tools.inference.generation import generate_diffusion_cond
from stable_audio_tools.data.utils import read_video, merge_video_audio, load_and_process_audio
import stat
import platform
import logging
from transformers import logging as transformers_logging

transformers_logging.set_verbosity_error()
logging.getLogger("transformers").setLevel(logging.ERROR)

model, model_config = get_pretrained_model('HKUSTAudio/AudioX')
sample_rate = model_config["sample_rate"]
sample_size = model_config["sample_size"]

TEMP_DIR = "tmp/gradio"
os.makedirs(TEMP_DIR, exist_ok=True)
os.chmod(TEMP_DIR, stat.S_IRWXU | stat.S_IRWXG | stat.S_IRWXO)

VIDEO_TEMP_DIR = os.path.join(TEMP_DIR, "videos")
os.makedirs(VIDEO_TEMP_DIR, exist_ok=True)
os.chmod(VIDEO_TEMP_DIR, stat.S_IRWXU | stat.S_IRWXG | stat.S_IRWXO)



@spaces.GPU(duration=10)
def generate_cond(
    prompt,
    negative_prompt=None,
    video_file=None,
    audio_prompt_file=None,
    audio_prompt_path=None,
    seconds_start=0,
    seconds_total=10,
    cfg_scale=7.0,
    steps=100,
    preview_every=0,
    seed=-1,
    sampler_type="dpmpp-3m-sde",
    sigma_min=0.03,
    sigma_max=500,
    cfg_rescale=0.0,
    use_init=False,
    init_audio=None,
    init_noise_level=0.1,
    mask_cropfrom=None,
    mask_pastefrom=None,
    mask_pasteto=None,
    mask_maskstart=None,
    mask_maskend=None,
    mask_softnessL=None,
    mask_softnessR=None,
    mask_marination=None,
    batch_size=1    
):
    if torch.cuda.is_available():
        torch.cuda.empty_cache()
    gc.collect()
    print(f"Prompt: {prompt}")
    preview_images = []
    if preview_every == 0:
        preview_every = None

    try:
        has_mps = platform.system() == "Darwin" and torch.backends.mps.is_available()
    except Exception:
        has_mps = False
    if has_mps:
        device = torch.device("mps")
    elif torch.cuda.is_available():
        device = torch.device("cuda")
    else:
        device = torch.device("cpu")
    
    global model
    model = model.to(device)

    target_fps = model_config.get("video_fps", 5)
    model_type = model_config.get("model_type", "diffusion_cond")

    if video_file is not None:
        actual_video_path = video_file['name'] if isinstance(video_file, dict) else video_file.name
    else:
        actual_video_path = None

    if audio_prompt_file is not None:
        audio_path = audio_prompt_file.name
    elif audio_prompt_path:
        audio_path = audio_prompt_path.strip()
    else:
        audio_path = None

    Video_tensors = read_video(actual_video_path, seek_time=seconds_start, duration=seconds_total, target_fps=target_fps)        
    audio_tensor = load_and_process_audio(audio_path, sample_rate, seconds_start, seconds_total)

    audio_tensor = audio_tensor.to(device)
    seconds_input = sample_size / sample_rate
    
    if not prompt:
        prompt = ""

    conditioning = [{
        "video_prompt": [Video_tensors.unsqueeze(0)],        
        "text_prompt": prompt,
        "audio_prompt": audio_tensor.unsqueeze(0),
        "seconds_start": seconds_start,
        "seconds_total": seconds_input
    }]
    if negative_prompt:
        negative_conditioning = [{
            "video_prompt": [Video_tensors.unsqueeze(0)],        
            "text_prompt": negative_prompt,
            "audio_prompt": audio_tensor.unsqueeze(0),
            "seconds_start": seconds_start,
            "seconds_total": seconds_total
        }] * 1
    else:
        negative_conditioning = None

    seed = int(seed)
    if not use_init:
        init_audio = None
    input_sample_size = sample_size

    def progress_callback(callback_info):
        nonlocal preview_images
        denoised = callback_info["denoised"]
        current_step = callback_info["i"]
        sigma = callback_info["sigma"]
        if (current_step - 1) % preview_every == 0:
            if model.pretransform is not None:
                denoised = model.pretransform.decode(denoised)
            denoised = rearrange(denoised, "b d n -> d (b n)")
            denoised = denoised.clamp(-1, 1).mul(32767).to(torch.int16).cpu()
            audio_spectrogram = audio_spectrogram_image(denoised, sample_rate=sample_rate)
            preview_images.append((audio_spectrogram, f"Step {current_step} sigma={sigma:.3f})"))
            
    if model_type == "diffusion_cond":
        audio = generate_diffusion_cond(
            model, 
            conditioning=conditioning,
            negative_conditioning=negative_conditioning,
            steps=steps,
            cfg_scale=cfg_scale,
            batch_size=batch_size,
            sample_size=input_sample_size,
            sample_rate=sample_rate,
            seed=seed,
            device=device,
            sampler_type=sampler_type,
            sigma_min=sigma_min,
            sigma_max=sigma_max,
            init_audio=init_audio,
            init_noise_level=init_noise_level,
            mask_args=None,
            callback=progress_callback if preview_every is not None else None,
            scale_phi=cfg_rescale
        )

    audio = rearrange(audio, "b d n -> d (b n)")

    samples_10s = 10 * sample_rate
    audio = audio[:, :samples_10s]
    audio = audio.to(torch.float32).div(torch.max(torch.abs(audio))).clamp(-1, 1).mul(32767).to(torch.int16).cpu()

    output_dir = "demo_result"
    os.makedirs(output_dir, exist_ok=True)
    output_audio_path = f"{output_dir}/output.wav"
    torchaudio.save(output_audio_path, audio, sample_rate)

    if actual_video_path:
        output_video_path = f"{output_dir}/{os.path.basename(actual_video_path)}"
        target_width = 1280
        target_height = 720
        merge_video_audio(
            actual_video_path, 
            output_audio_path, 
            output_video_path, 
            seconds_start, 
            seconds_total
        )
    else:
        output_video_path = None

    del actual_video_path
    torch.cuda.empty_cache()
    gc.collect()

    return output_video_path, output_audio_path


with gr.Blocks() as interface:
    gr.Markdown(
        """
        # 馃帶AudioX: Diffusion Transformer for Anything-to-Audio Generation  
        **[Paper](https://arxiv.org/abs/2503.10522) 路 [Project Page](https://zeyuet.github.io/AudioX/) 路 [Huggingface](https://huggingface.co./HKUSTAudio/AudioX) 路 [GitHub](https://github.com/ZeyueT/AudioX)**
        """
    )

    with gr.Tab("Generation"):
        with gr.Row():
            with gr.Column():
                prompt = gr.Textbox(
                    show_label=False,
                    placeholder="Enter your prompt"
                )
                negative_prompt = gr.Textbox(
                    show_label=False,
                    placeholder="Negative prompt",
                    visible=False
                )
                video_file = gr.File(label="Upload Video File")
                audio_prompt_file = gr.File(
                    label="Upload Audio Prompt File",
                    visible=False
                )
                audio_prompt_path = gr.Textbox(
                    label="Audio Prompt Path",
                    placeholder="Enter audio file path",
                    visible=False
                )

        with gr.Row():
            with gr.Column(scale=6):
                with gr.Accordion("Video Params", open=False):
                    seconds_start = gr.Slider(
                        minimum=0,
                        maximum=512,
                        step=1,
                        value=0,
                        label="Video Seconds Start"
                    )
                    seconds_total = gr.Slider(
                        minimum=0,
                        maximum=10,
                        step=1,
                        value=10,
                        label="Seconds Total",
                        interactive=False
                    )

        with gr.Row():
            with gr.Column(scale=4):
                with gr.Accordion("Sampler Params", open=False):
                    steps = gr.Slider(
                        minimum=1,
                        maximum=500,
                        step=1,
                        value=100,
                        label="Steps"
                    )
                    preview_every = gr.Slider(
                        minimum=0,
                        maximum=100,
                        step=1,
                        value=0,
                        label="Preview Every"
                    )
                    cfg_scale = gr.Slider(
                        minimum=0.0,
                        maximum=25.0,
                        step=0.1,
                        value=7.0,
                        label="CFG Scale"
                    )
                    seed = gr.Textbox(
                        label="Seed (set to -1 for random seed)",
                        value="-1"
                    )
                    sampler_type = gr.Dropdown(
                        choices=[
                            "dpmpp-2m-sde",
                            "dpmpp-3m-sde",
                            "k-heun",
                            "k-lms",
                            "k-dpmpp-2s-ancestral",
                            "k-dpm-2",
                            "k-dpm-fast"
                        ],
                        label="Sampler Type",
                        value="dpmpp-3m-sde"
                    )
                    sigma_min = gr.Slider(
                        minimum=0.0,
                        maximum=2.0,
                        step=0.01,
                        value=0.03,
                        label="Sigma Min"
                    )
                    sigma_max = gr.Slider(
                        minimum=0.0,
                        maximum=1000.0,
                        step=0.1,
                        value=500,
                        label="Sigma Max"
                    )
                    cfg_rescale = gr.Slider(
                        minimum=0.0,
                        maximum=1,
                        step=0.01,
                        value=0.0,
                        label="CFG Rescale Amount"
                    )

        with gr.Row():
            with gr.Column(scale=4):
                with gr.Accordion("Init Audio", open=False, visible=False):
                    init_audio_checkbox = gr.Checkbox(label="Use Init Audio")
                    init_audio_input = gr.Audio(label="Init Audio")
                    init_noise_level = gr.Slider(
                        minimum=0.1,
                        maximum=100.0,
                        step=0.01,
                        value=0.1,
                        label="Init Noise Level"
                    )

        with gr.Row():
            generate_button = gr.Button("Generate", variant="primary")

        with gr.Row():
            with gr.Column(scale=6):
                video_output = gr.Video(label="Output Video", interactive=False)
                audio_output = gr.Audio(label="Output Audio", interactive=False)

        inputs = [
            prompt,
            negative_prompt,
            video_file,
            audio_prompt_file,
            audio_prompt_path,
            seconds_start,
            seconds_total,
            cfg_scale,
            steps,
            preview_every,
            seed,
            sampler_type,
            sigma_min,
            sigma_max,
            cfg_rescale,
            init_audio_checkbox,
            init_audio_input,
            init_noise_level
        ]

        generate_button.click(
            fn=generate_cond,
            inputs=inputs,
            outputs=[video_output, audio_output]
        )

    gr.Markdown("## Examples")
    with gr.Accordion("Click to show examples", open=False):
        with gr.Row():
            gr.Markdown("**馃摑 Task: Text-to-Audio**")                
            with gr.Column(scale=1.2):
                gr.Markdown("Prompt: *Typing on a keyboard*")
                ex1 = gr.Button("Load Example")
            with gr.Column(scale=1.2):
                gr.Markdown("Prompt: *Ocean waves crashing*")
                ex2 = gr.Button("Load Example")
            with gr.Column(scale=1.2):
                gr.Markdown("Prompt: *Footsteps in snow*")
                ex3 = gr.Button("Load Example")
        
        with gr.Row():
            gr.Markdown("**馃幎 Task: Text-to-Music**")                
            with gr.Column(scale=1.2):
                gr.Markdown("Prompt: *An orchestral music piece for a fantasy world.*")
                ex4 = gr.Button("Load Example")
            with gr.Column(scale=1.2):
                gr.Markdown("Prompt: *Produce upbeat electronic music for a dance party*")
                ex5 = gr.Button("Load Example")
            with gr.Column(scale=1.2):
                gr.Markdown("Prompt: *A dreamy lo-fi beat with vinyl crackle*")
                ex6 = gr.Button("Load Example")

    ex1.click(lambda: ["Typing on a keyboard", None, None, None, None, 0, 10, 7.0, 100, 0, "1225575558", "dpmpp-3m-sde", 0.03, 500, 0.0, False, None, 0.1], inputs=[], outputs=inputs)
    ex2.click(lambda: ["Ocean waves crashing", None, None, None, None, 0, 10, 7.0, 100, 0, "3615819170", "dpmpp-3m-sde", 0.03, 500, 0.0, False, None, 0.1], inputs=[], outputs=inputs)
    ex3.click(lambda: ["Footsteps in snow", None, None, None, None, 0, 10, 7.0, 100, 0, "1703896811", "dpmpp-3m-sde", 0.03, 500, 0.0, False, None, 0.1], inputs=[], outputs=inputs)
    ex4.click(lambda: ["An orchestral music piece for a fantasy world.", None, None, None, None, 0, 10, 7.0, 100, 0, "1561898939", "dpmpp-3m-sde", 0.03, 500, 0.0, False, None, 0.1], inputs=[], outputs=inputs)
    ex5.click(lambda: ["Produce upbeat electronic music for a dance party", None, None, None, None, 0, 10, 7.0, 100, 0, "406022999", "dpmpp-3m-sde", 0.03, 500, 0.0, False, None, 0.1], inputs=[], outputs=inputs)
    ex6.click(lambda: ["A dreamy lo-fi beat with vinyl crackle", None, None, None, None, 0, 10, 7.0, 100, 0, "807934770", "dpmpp-3m-sde", 0.03, 500, 0.0, False, None, 0.1], inputs=[], outputs=inputs)

interface.queue(5).launch(server_name="0.0.0.0", server_port=7860, share=True)