Spaces:
Running
on
Zero
Running
on
Zero
File size: 14,483 Bytes
8ab1cf8 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 |
import spaces
import gradio as gr
import torch
import torchaudio
import os
from einops import rearrange
import gc
import spaces
import gradio as gr
import torch
import torchaudio
import os
from einops import rearrange
from stable_audio_tools import get_pretrained_model
from stable_audio_tools.inference.generation import generate_diffusion_cond
from stable_audio_tools.data.utils import read_video, merge_video_audio, load_and_process_audio
import stat
import platform
import logging
from transformers import logging as transformers_logging
transformers_logging.set_verbosity_error()
logging.getLogger("transformers").setLevel(logging.ERROR)
model, model_config = get_pretrained_model('HKUSTAudio/AudioX')
sample_rate = model_config["sample_rate"]
sample_size = model_config["sample_size"]
TEMP_DIR = "tmp/gradio"
os.makedirs(TEMP_DIR, exist_ok=True)
os.chmod(TEMP_DIR, stat.S_IRWXU | stat.S_IRWXG | stat.S_IRWXO)
VIDEO_TEMP_DIR = os.path.join(TEMP_DIR, "videos")
os.makedirs(VIDEO_TEMP_DIR, exist_ok=True)
os.chmod(VIDEO_TEMP_DIR, stat.S_IRWXU | stat.S_IRWXG | stat.S_IRWXO)
@spaces.GPU(duration=10)
def generate_cond(
prompt,
negative_prompt=None,
video_file=None,
audio_prompt_file=None,
audio_prompt_path=None,
seconds_start=0,
seconds_total=10,
cfg_scale=7.0,
steps=100,
preview_every=0,
seed=-1,
sampler_type="dpmpp-3m-sde",
sigma_min=0.03,
sigma_max=500,
cfg_rescale=0.0,
use_init=False,
init_audio=None,
init_noise_level=0.1,
mask_cropfrom=None,
mask_pastefrom=None,
mask_pasteto=None,
mask_maskstart=None,
mask_maskend=None,
mask_softnessL=None,
mask_softnessR=None,
mask_marination=None,
batch_size=1
):
if torch.cuda.is_available():
torch.cuda.empty_cache()
gc.collect()
print(f"Prompt: {prompt}")
preview_images = []
if preview_every == 0:
preview_every = None
try:
has_mps = platform.system() == "Darwin" and torch.backends.mps.is_available()
except Exception:
has_mps = False
if has_mps:
device = torch.device("mps")
elif torch.cuda.is_available():
device = torch.device("cuda")
else:
device = torch.device("cpu")
global model
model = model.to(device)
target_fps = model_config.get("video_fps", 5)
model_type = model_config.get("model_type", "diffusion_cond")
if video_file is not None:
actual_video_path = video_file['name'] if isinstance(video_file, dict) else video_file.name
else:
actual_video_path = None
if audio_prompt_file is not None:
audio_path = audio_prompt_file.name
elif audio_prompt_path:
audio_path = audio_prompt_path.strip()
else:
audio_path = None
Video_tensors = read_video(actual_video_path, seek_time=seconds_start, duration=seconds_total, target_fps=target_fps)
audio_tensor = load_and_process_audio(audio_path, sample_rate, seconds_start, seconds_total)
audio_tensor = audio_tensor.to(device)
seconds_input = sample_size / sample_rate
if not prompt:
prompt = ""
conditioning = [{
"video_prompt": [Video_tensors.unsqueeze(0)],
"text_prompt": prompt,
"audio_prompt": audio_tensor.unsqueeze(0),
"seconds_start": seconds_start,
"seconds_total": seconds_input
}]
if negative_prompt:
negative_conditioning = [{
"video_prompt": [Video_tensors.unsqueeze(0)],
"text_prompt": negative_prompt,
"audio_prompt": audio_tensor.unsqueeze(0),
"seconds_start": seconds_start,
"seconds_total": seconds_total
}] * 1
else:
negative_conditioning = None
seed = int(seed)
if not use_init:
init_audio = None
input_sample_size = sample_size
def progress_callback(callback_info):
nonlocal preview_images
denoised = callback_info["denoised"]
current_step = callback_info["i"]
sigma = callback_info["sigma"]
if (current_step - 1) % preview_every == 0:
if model.pretransform is not None:
denoised = model.pretransform.decode(denoised)
denoised = rearrange(denoised, "b d n -> d (b n)")
denoised = denoised.clamp(-1, 1).mul(32767).to(torch.int16).cpu()
audio_spectrogram = audio_spectrogram_image(denoised, sample_rate=sample_rate)
preview_images.append((audio_spectrogram, f"Step {current_step} sigma={sigma:.3f})"))
if model_type == "diffusion_cond":
audio = generate_diffusion_cond(
model,
conditioning=conditioning,
negative_conditioning=negative_conditioning,
steps=steps,
cfg_scale=cfg_scale,
batch_size=batch_size,
sample_size=input_sample_size,
sample_rate=sample_rate,
seed=seed,
device=device,
sampler_type=sampler_type,
sigma_min=sigma_min,
sigma_max=sigma_max,
init_audio=init_audio,
init_noise_level=init_noise_level,
mask_args=None,
callback=progress_callback if preview_every is not None else None,
scale_phi=cfg_rescale
)
audio = rearrange(audio, "b d n -> d (b n)")
samples_10s = 10 * sample_rate
audio = audio[:, :samples_10s]
audio = audio.to(torch.float32).div(torch.max(torch.abs(audio))).clamp(-1, 1).mul(32767).to(torch.int16).cpu()
output_dir = "demo_result"
os.makedirs(output_dir, exist_ok=True)
output_audio_path = f"{output_dir}/output.wav"
torchaudio.save(output_audio_path, audio, sample_rate)
if actual_video_path:
output_video_path = f"{output_dir}/{os.path.basename(actual_video_path)}"
target_width = 1280
target_height = 720
merge_video_audio(
actual_video_path,
output_audio_path,
output_video_path,
seconds_start,
seconds_total
)
else:
output_video_path = None
del actual_video_path
torch.cuda.empty_cache()
gc.collect()
return output_video_path, output_audio_path
with gr.Blocks() as interface:
gr.Markdown(
"""
# 馃帶AudioX: Diffusion Transformer for Anything-to-Audio Generation
**[Paper](https://arxiv.org/abs/2503.10522) 路 [Project Page](https://zeyuet.github.io/AudioX/) 路 [Huggingface](https://huggingface.co./HKUSTAudio/AudioX) 路 [GitHub](https://github.com/ZeyueT/AudioX)**
"""
)
with gr.Tab("Generation"):
with gr.Row():
with gr.Column():
prompt = gr.Textbox(
show_label=False,
placeholder="Enter your prompt"
)
negative_prompt = gr.Textbox(
show_label=False,
placeholder="Negative prompt",
visible=False
)
video_file = gr.File(label="Upload Video File")
audio_prompt_file = gr.File(
label="Upload Audio Prompt File",
visible=False
)
audio_prompt_path = gr.Textbox(
label="Audio Prompt Path",
placeholder="Enter audio file path",
visible=False
)
with gr.Row():
with gr.Column(scale=6):
with gr.Accordion("Video Params", open=False):
seconds_start = gr.Slider(
minimum=0,
maximum=512,
step=1,
value=0,
label="Video Seconds Start"
)
seconds_total = gr.Slider(
minimum=0,
maximum=10,
step=1,
value=10,
label="Seconds Total",
interactive=False
)
with gr.Row():
with gr.Column(scale=4):
with gr.Accordion("Sampler Params", open=False):
steps = gr.Slider(
minimum=1,
maximum=500,
step=1,
value=100,
label="Steps"
)
preview_every = gr.Slider(
minimum=0,
maximum=100,
step=1,
value=0,
label="Preview Every"
)
cfg_scale = gr.Slider(
minimum=0.0,
maximum=25.0,
step=0.1,
value=7.0,
label="CFG Scale"
)
seed = gr.Textbox(
label="Seed (set to -1 for random seed)",
value="-1"
)
sampler_type = gr.Dropdown(
choices=[
"dpmpp-2m-sde",
"dpmpp-3m-sde",
"k-heun",
"k-lms",
"k-dpmpp-2s-ancestral",
"k-dpm-2",
"k-dpm-fast"
],
label="Sampler Type",
value="dpmpp-3m-sde"
)
sigma_min = gr.Slider(
minimum=0.0,
maximum=2.0,
step=0.01,
value=0.03,
label="Sigma Min"
)
sigma_max = gr.Slider(
minimum=0.0,
maximum=1000.0,
step=0.1,
value=500,
label="Sigma Max"
)
cfg_rescale = gr.Slider(
minimum=0.0,
maximum=1,
step=0.01,
value=0.0,
label="CFG Rescale Amount"
)
with gr.Row():
with gr.Column(scale=4):
with gr.Accordion("Init Audio", open=False, visible=False):
init_audio_checkbox = gr.Checkbox(label="Use Init Audio")
init_audio_input = gr.Audio(label="Init Audio")
init_noise_level = gr.Slider(
minimum=0.1,
maximum=100.0,
step=0.01,
value=0.1,
label="Init Noise Level"
)
with gr.Row():
generate_button = gr.Button("Generate", variant="primary")
with gr.Row():
with gr.Column(scale=6):
video_output = gr.Video(label="Output Video", interactive=False)
audio_output = gr.Audio(label="Output Audio", interactive=False)
inputs = [
prompt,
negative_prompt,
video_file,
audio_prompt_file,
audio_prompt_path,
seconds_start,
seconds_total,
cfg_scale,
steps,
preview_every,
seed,
sampler_type,
sigma_min,
sigma_max,
cfg_rescale,
init_audio_checkbox,
init_audio_input,
init_noise_level
]
generate_button.click(
fn=generate_cond,
inputs=inputs,
outputs=[video_output, audio_output]
)
gr.Markdown("## Examples")
with gr.Accordion("Click to show examples", open=False):
with gr.Row():
gr.Markdown("**馃摑 Task: Text-to-Audio**")
with gr.Column(scale=1.2):
gr.Markdown("Prompt: *Typing on a keyboard*")
ex1 = gr.Button("Load Example")
with gr.Column(scale=1.2):
gr.Markdown("Prompt: *Ocean waves crashing*")
ex2 = gr.Button("Load Example")
with gr.Column(scale=1.2):
gr.Markdown("Prompt: *Footsteps in snow*")
ex3 = gr.Button("Load Example")
with gr.Row():
gr.Markdown("**馃幎 Task: Text-to-Music**")
with gr.Column(scale=1.2):
gr.Markdown("Prompt: *An orchestral music piece for a fantasy world.*")
ex4 = gr.Button("Load Example")
with gr.Column(scale=1.2):
gr.Markdown("Prompt: *Produce upbeat electronic music for a dance party*")
ex5 = gr.Button("Load Example")
with gr.Column(scale=1.2):
gr.Markdown("Prompt: *A dreamy lo-fi beat with vinyl crackle*")
ex6 = gr.Button("Load Example")
ex1.click(lambda: ["Typing on a keyboard", None, None, None, None, 0, 10, 7.0, 100, 0, "1225575558", "dpmpp-3m-sde", 0.03, 500, 0.0, False, None, 0.1], inputs=[], outputs=inputs)
ex2.click(lambda: ["Ocean waves crashing", None, None, None, None, 0, 10, 7.0, 100, 0, "3615819170", "dpmpp-3m-sde", 0.03, 500, 0.0, False, None, 0.1], inputs=[], outputs=inputs)
ex3.click(lambda: ["Footsteps in snow", None, None, None, None, 0, 10, 7.0, 100, 0, "1703896811", "dpmpp-3m-sde", 0.03, 500, 0.0, False, None, 0.1], inputs=[], outputs=inputs)
ex4.click(lambda: ["An orchestral music piece for a fantasy world.", None, None, None, None, 0, 10, 7.0, 100, 0, "1561898939", "dpmpp-3m-sde", 0.03, 500, 0.0, False, None, 0.1], inputs=[], outputs=inputs)
ex5.click(lambda: ["Produce upbeat electronic music for a dance party", None, None, None, None, 0, 10, 7.0, 100, 0, "406022999", "dpmpp-3m-sde", 0.03, 500, 0.0, False, None, 0.1], inputs=[], outputs=inputs)
ex6.click(lambda: ["A dreamy lo-fi beat with vinyl crackle", None, None, None, None, 0, 10, 7.0, 100, 0, "807934770", "dpmpp-3m-sde", 0.03, 500, 0.0, False, None, 0.1], inputs=[], outputs=inputs)
interface.queue(5).launch(server_name="0.0.0.0", server_port=7860, share=True) |