|
import os |
|
os.environ["NUMBA_DISABLE_CACHE"] = "1" |
|
|
|
import streamlit as st |
|
import whisper |
|
from gtts import gTTS |
|
from moviepy.editor import VideoFileClip, AudioFileClip |
|
from tempfile import NamedTemporaryFile |
|
import torchaudio |
|
|
|
st.set_page_config(page_title="AI Voiceover", layout="centered") |
|
st.title("π€ AI Voiceover App") |
|
|
|
@st.cache_resource |
|
def load_whisper_model(): |
|
return whisper.load_model("small") |
|
|
|
whisper_model = load_whisper_model() |
|
|
|
video_file = st.file_uploader("Upload a short video (MP4 preferred)", type=["mp4", "mov", "avi"]) |
|
|
|
if video_file: |
|
with NamedTemporaryFile(delete=False, suffix=".mp4") as tmp_video: |
|
tmp_video.write(video_file.read()) |
|
tmp_video_path = tmp_video.name |
|
|
|
st.video(tmp_video_path) |
|
|
|
video = VideoFileClip(tmp_video_path) |
|
audio_path = tmp_video_path.replace(".mp4", ".wav") |
|
video.audio.write_audiofile(audio_path) |
|
|
|
st.info("Transcribing using Whisper...") |
|
result = whisper_model.transcribe(audio_path) |
|
st.subheader("π Detected Speech") |
|
st.write(result["text"]) |
|
|
|
custom_text = st.text_area("Enter your voiceover text:", result["text"]) |
|
|
|
if st.button("Generate AI Voiceover"): |
|
ai_voice_path = audio_path.replace(".wav", "_ai_voice.wav") |
|
tts = gTTS(text=custom_text) |
|
tts.save(ai_voice_path) |
|
st.audio(ai_voice_path) |
|
|
|
original_audio, sr = torchaudio.load(audio_path) |
|
ai_audio, _ = torchaudio.load(ai_voice_path) |
|
|
|
if ai_audio.shape[1] < original_audio.shape[1]: |
|
diff = original_audio.shape[1] - ai_audio.shape[1] |
|
ai_audio = torchaudio.functional.pad(ai_audio, (0, diff)) |
|
else: |
|
ai_audio = ai_audio[:, :original_audio.shape[1]] |
|
|
|
mixed_audio = (original_audio * 0.4) + (ai_audio * 0.6) |
|
mixed_path = audio_path.replace(".wav", "_mixed.wav") |
|
torchaudio.save(mixed_path, mixed_audio, sr) |
|
|
|
final_video = video.set_audio(AudioFileClip(mixed_path)) |
|
final_path = tmp_video_path.replace(".mp4", "_final_streamlit.mp4") |
|
final_video.write_videofile(final_path, codec="libx264", audio_codec="aac") |
|
|
|
with open(final_path, "rb") as f: |
|
st.download_button(label="π₯ Download Final Video", data=f, file_name="final_ai_voiceover.mp4") |
|
|