Update app.py
Browse files
app.py
CHANGED
@@ -2,6 +2,7 @@ import streamlit as st
|
|
2 |
import pandas as pd
|
3 |
from huggingface_hub import InferenceClient
|
4 |
import re
|
|
|
5 |
|
6 |
# Initialize hosted inference client
|
7 |
client = InferenceClient(model="google/flan-t5-base")
|
@@ -18,84 +19,84 @@ account_map = {
|
|
18 |
"salary": "50002"
|
19 |
}
|
20 |
|
21 |
-
#
|
22 |
-
segment = {
|
23 |
-
"company": "01",
|
24 |
-
"business_type": "102",
|
25 |
-
"location": "001",
|
26 |
-
"cost_center": "001",
|
27 |
-
"future": "000"
|
28 |
-
}
|
29 |
-
|
30 |
-
# Session state to store entries
|
31 |
if "gl_entries" not in st.session_state:
|
32 |
st.session_state.gl_entries = []
|
|
|
|
|
33 |
|
34 |
-
#
|
|
|
|
|
|
|
35 |
|
36 |
-
def
|
37 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
38 |
|
39 |
def handle_gl_entry(prompt):
|
40 |
prompt_lower = prompt.lower()
|
41 |
-
amount =
|
42 |
-
|
|
|
43 |
|
44 |
-
#
|
45 |
-
|
46 |
-
if
|
47 |
-
|
48 |
|
49 |
-
# Identify transaction type
|
50 |
if any(word in prompt_lower for word in ["invest", "capital", "start"]):
|
51 |
-
account_name = "capital"
|
52 |
description = "Owner Capital Contribution"
|
53 |
-
debit_account = "cash"
|
54 |
-
credit_account = account_name
|
55 |
elif "rent" in prompt_lower:
|
56 |
-
account_name = "rent"
|
57 |
description = "Rent Expense"
|
58 |
-
debit_account =
|
59 |
-
credit_account = "cash"
|
60 |
elif "utilities" in prompt_lower:
|
61 |
-
account_name = "utilities"
|
62 |
description = "Utilities Expense"
|
63 |
-
debit_account =
|
64 |
-
credit_account = "cash"
|
65 |
elif any(word in prompt_lower for word in ["sale", "revenue"]):
|
66 |
-
account_name = "sales"
|
67 |
description = "Sales Revenue"
|
68 |
-
debit_account = "cash"
|
69 |
-
credit_account = account_name
|
70 |
elif "supplies" in prompt_lower:
|
71 |
-
account_name = "supplies"
|
72 |
description = "Supplies Purchase"
|
73 |
-
debit_account =
|
74 |
-
credit_account = "cash"
|
75 |
elif "salary" in prompt_lower or "payroll" in prompt_lower:
|
76 |
-
account_name = "salary"
|
77 |
description = "Salary Expense"
|
78 |
-
debit_account =
|
79 |
-
credit_account = "cash"
|
80 |
else:
|
81 |
-
|
82 |
-
return pd.DataFrame([{"Date": "2025-04-01", "Description": description, "Account Code": "N/A", "Debit": 0, "Credit": 0}])
|
83 |
|
84 |
-
|
85 |
-
|
86 |
|
87 |
entry = [
|
88 |
{
|
89 |
-
"Date":
|
90 |
"Description": description,
|
91 |
-
"Account Code":
|
|
|
92 |
"Debit": amount,
|
93 |
"Credit": 0
|
94 |
},
|
95 |
{
|
96 |
-
"Date":
|
97 |
"Description": f"Offset for {description.lower()}",
|
98 |
-
"Account Code":
|
|
|
99 |
"Debit": 0,
|
100 |
"Credit": amount
|
101 |
}
|
@@ -103,25 +104,24 @@ def handle_gl_entry(prompt):
|
|
103 |
st.session_state.gl_entries.extend(entry)
|
104 |
return pd.DataFrame(entry)
|
105 |
|
106 |
-
#
|
107 |
-
st.
|
108 |
-
|
109 |
-
|
110 |
-
|
111 |
-
|
112 |
-
|
113 |
-
|
114 |
-
|
115 |
-
|
116 |
-
|
117 |
-
|
118 |
-
|
119 |
-
st.success("β
All records have been deleted.")
|
120 |
-
|
121 |
if prompt:
|
122 |
result = handle_gl_entry(prompt)
|
123 |
st.dataframe(result)
|
124 |
|
|
|
125 |
if st.session_state.gl_entries:
|
126 |
st.subheader("π All Journal Entries")
|
127 |
st.dataframe(pd.DataFrame(st.session_state.gl_entries))
|
|
|
2 |
import pandas as pd
|
3 |
from huggingface_hub import InferenceClient
|
4 |
import re
|
5 |
+
from datetime import datetime
|
6 |
|
7 |
# Initialize hosted inference client
|
8 |
client = InferenceClient(model="google/flan-t5-base")
|
|
|
19 |
"salary": "50002"
|
20 |
}
|
21 |
|
22 |
+
# Session state
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
23 |
if "gl_entries" not in st.session_state:
|
24 |
st.session_state.gl_entries = []
|
25 |
+
if "company_name" not in st.session_state:
|
26 |
+
st.session_state.company_name = "My Company"
|
27 |
|
28 |
+
# Streamlit UI
|
29 |
+
st.set_page_config(page_title="AI ERP App", layout="wide")
|
30 |
+
st.title(f"π {st.session_state.company_name} Ledger - AI-Powered ERP")
|
31 |
+
prompt = st.text_input("π Enter your accounting instruction:")
|
32 |
|
33 |
+
def extract_amount(prompt):
|
34 |
+
match = re.search(r'\$?(\d{1,3}(,\d{3})*|\d+)(\.\d{1,2})?', prompt)
|
35 |
+
return float(match.group().replace(',', '').replace('$', '')) if match else 0
|
36 |
+
|
37 |
+
def extract_date(prompt):
|
38 |
+
date_match = re.search(r'(\d{1,2}[/-]\d{1,2}[/-]\d{2,4})|today', prompt.lower())
|
39 |
+
if date_match:
|
40 |
+
if "today" in date_match.group().lower():
|
41 |
+
return datetime.today().strftime("%Y-%m-%d")
|
42 |
+
try:
|
43 |
+
return datetime.strptime(date_match.group(), "%d/%m/%Y").strftime("%Y-%m-%d")
|
44 |
+
except:
|
45 |
+
try:
|
46 |
+
return datetime.strptime(date_match.group(), "%d-%m-%Y").strftime("%Y-%m-%d")
|
47 |
+
except:
|
48 |
+
return datetime.today().strftime("%Y-%m-%d")
|
49 |
+
return datetime.today().strftime("%Y-%m-%d")
|
50 |
|
51 |
def handle_gl_entry(prompt):
|
52 |
prompt_lower = prompt.lower()
|
53 |
+
amount = extract_amount(prompt)
|
54 |
+
date_str = extract_date(prompt)
|
55 |
+
description = ""
|
56 |
|
57 |
+
# Capture new company name
|
58 |
+
company_match = re.search(r"company with a name of ([\w\s&.-]+)", prompt_lower)
|
59 |
+
if company_match:
|
60 |
+
st.session_state.company_name = company_match.group(1).strip().upper()
|
61 |
|
|
|
62 |
if any(word in prompt_lower for word in ["invest", "capital", "start"]):
|
|
|
63 |
description = "Owner Capital Contribution"
|
64 |
+
debit_account, credit_account = "cash", "capital"
|
|
|
65 |
elif "rent" in prompt_lower:
|
|
|
66 |
description = "Rent Expense"
|
67 |
+
debit_account, credit_account = "rent", "cash"
|
|
|
68 |
elif "utilities" in prompt_lower:
|
|
|
69 |
description = "Utilities Expense"
|
70 |
+
debit_account, credit_account = "utilities", "cash"
|
|
|
71 |
elif any(word in prompt_lower for word in ["sale", "revenue"]):
|
|
|
72 |
description = "Sales Revenue"
|
73 |
+
debit_account, credit_account = "cash", "sales"
|
|
|
74 |
elif "supplies" in prompt_lower:
|
|
|
75 |
description = "Supplies Purchase"
|
76 |
+
debit_account, credit_account = "supplies", "cash"
|
|
|
77 |
elif "salary" in prompt_lower or "payroll" in prompt_lower:
|
|
|
78 |
description = "Salary Expense"
|
79 |
+
debit_account, credit_account = "salary", "cash"
|
|
|
80 |
else:
|
81 |
+
return pd.DataFrame([{"Date": date_str, "Description": "Unrecognized Entry", "Account Code": "N/A", "Account Type": "N/A", "Debit": 0, "Credit": 0}])
|
|
|
82 |
|
83 |
+
def format_code(name):
|
84 |
+
return f"01-102-001-001-{account_map[name]}-000"
|
85 |
|
86 |
entry = [
|
87 |
{
|
88 |
+
"Date": date_str,
|
89 |
"Description": description,
|
90 |
+
"Account Code": format_code(debit_account),
|
91 |
+
"Account Type": debit_account.title(),
|
92 |
"Debit": amount,
|
93 |
"Credit": 0
|
94 |
},
|
95 |
{
|
96 |
+
"Date": date_str,
|
97 |
"Description": f"Offset for {description.lower()}",
|
98 |
+
"Account Code": format_code(credit_account),
|
99 |
+
"Account Type": credit_account.title(),
|
100 |
"Debit": 0,
|
101 |
"Credit": amount
|
102 |
}
|
|
|
104 |
st.session_state.gl_entries.extend(entry)
|
105 |
return pd.DataFrame(entry)
|
106 |
|
107 |
+
# Buttons
|
108 |
+
col1, col2 = st.columns([1, 1])
|
109 |
+
with col1:
|
110 |
+
st.download_button("π₯ Download All Entries (CSV)",
|
111 |
+
data=pd.DataFrame(st.session_state.gl_entries).to_csv(index=False),
|
112 |
+
file_name="gl_entries.csv",
|
113 |
+
mime="text/csv")
|
114 |
+
with col2:
|
115 |
+
if st.button("ποΈ Delete All Records"):
|
116 |
+
st.session_state.gl_entries = []
|
117 |
+
st.success("β
All records have been deleted.")
|
118 |
+
|
119 |
+
# Handle input
|
|
|
|
|
120 |
if prompt:
|
121 |
result = handle_gl_entry(prompt)
|
122 |
st.dataframe(result)
|
123 |
|
124 |
+
# Display ledger
|
125 |
if st.session_state.gl_entries:
|
126 |
st.subheader("π All Journal Entries")
|
127 |
st.dataframe(pd.DataFrame(st.session_state.gl_entries))
|