Update app.py
Browse files
app.py
CHANGED
@@ -1,4 +1,4 @@
|
|
1 |
-
import
|
2 |
from sentiment_analysis import analyze_sentiment, transcribe_with_chunks
|
3 |
from product_recommender import ProductRecommender
|
4 |
from objection_handler import ObjectionHandler
|
@@ -15,43 +15,54 @@ from io import BytesIO
|
|
15 |
import wave
|
16 |
import threading
|
17 |
import queue
|
18 |
-
from streamlit_webrtc import webrtc_streamer, WebRtcMode, AudioProcessorBase
|
19 |
|
20 |
# Initialize components
|
21 |
-
objection_handler = ObjectionHandler("objections.csv")
|
22 |
-
product_recommender = ProductRecommender("recommendations.csv")
|
23 |
model = SentenceTransformer('all-MiniLM-L6-v2')
|
24 |
|
25 |
# Queue to hold transcribed text
|
26 |
transcription_queue = queue.Queue()
|
27 |
|
28 |
def generate_comprehensive_summary(chunks):
|
|
|
|
|
|
|
|
|
29 |
full_text = " ".join([chunk[0] for chunk in chunks])
|
|
|
|
|
30 |
total_chunks = len(chunks)
|
31 |
sentiments = [chunk[1] for chunk in chunks]
|
32 |
|
|
|
33 |
context_keywords = {
|
34 |
'product_inquiry': ['dress', 'product', 'price', 'stock'],
|
35 |
'pricing': ['cost', 'price', 'budget'],
|
36 |
'negotiation': ['installment', 'payment', 'manage']
|
37 |
}
|
38 |
|
|
|
39 |
themes = []
|
40 |
for keyword_type, keywords in context_keywords.items():
|
41 |
if any(keyword.lower() in full_text.lower() for keyword in keywords):
|
42 |
themes.append(keyword_type)
|
43 |
|
|
|
44 |
positive_count = sentiments.count('POSITIVE')
|
45 |
negative_count = sentiments.count('NEGATIVE')
|
46 |
neutral_count = sentiments.count('NEUTRAL')
|
47 |
|
|
|
48 |
key_interactions = []
|
49 |
for chunk in chunks:
|
50 |
if any(keyword.lower() in chunk[0].lower() for keyword in ['price', 'dress', 'stock', 'installment']):
|
51 |
key_interactions.append(chunk[0])
|
52 |
|
|
|
53 |
summary = f"Conversation Summary:\n"
|
54 |
|
|
|
55 |
if 'product_inquiry' in themes:
|
56 |
summary += "• Customer initiated a product inquiry about items.\n"
|
57 |
|
@@ -61,15 +72,18 @@ def generate_comprehensive_summary(chunks):
|
|
61 |
if 'negotiation' in themes:
|
62 |
summary += "• Customer and seller explored flexible payment options.\n"
|
63 |
|
|
|
64 |
summary += f"\nConversation Sentiment:\n"
|
65 |
summary += f"• Positive Interactions: {positive_count}\n"
|
66 |
summary += f"• Negative Interactions: {negative_count}\n"
|
67 |
summary += f"• Neutral Interactions: {neutral_count}\n"
|
68 |
|
|
|
69 |
summary += "\nKey Conversation Points:\n"
|
70 |
-
for interaction in key_interactions[:3]:
|
71 |
summary += f"• {interaction}\n"
|
72 |
|
|
|
73 |
if positive_count > negative_count:
|
74 |
summary += "\nOutcome: Constructive and potentially successful interaction."
|
75 |
elif negative_count > positive_count:
|
@@ -103,220 +117,127 @@ def calculate_overall_sentiment(sentiment_scores):
|
|
103 |
def handle_objection(text):
|
104 |
query_embedding = model.encode([text])
|
105 |
distances, indices = objection_handler.index.search(query_embedding, 1)
|
106 |
-
if distances[0][0] < 1.5:
|
107 |
responses = objection_handler.handle_objection(text)
|
108 |
return "\n".join(responses) if responses else "No objection response found."
|
109 |
return "No objection response found."
|
110 |
|
111 |
def transcribe_audio(audio_bytes, sample_rate=16000):
|
|
|
112 |
try:
|
|
|
113 |
with BytesIO() as wav_buffer:
|
114 |
with wave.open(wav_buffer, 'wb') as wf:
|
115 |
-
wf.setnchannels(1)
|
116 |
-
wf.setsampwidth(2)
|
117 |
-
wf.setframerate(sample_rate)
|
118 |
wf.writeframes(audio_bytes)
|
119 |
|
120 |
-
|
121 |
-
chunks = transcribe_with_chunks(
|
122 |
if chunks:
|
123 |
-
|
124 |
-
return chunks[-1][0]
|
125 |
except Exception as e:
|
126 |
-
|
127 |
return None
|
128 |
|
129 |
-
|
130 |
-
|
131 |
-
|
|
|
|
|
|
|
|
|
|
|
132 |
|
133 |
-
|
134 |
-
|
135 |
-
|
136 |
-
|
137 |
-
text = transcribe_audio(audio_bytes)
|
138 |
-
if text:
|
139 |
-
st.write(f"Transcribed text: {text}")
|
140 |
-
self.transcription_queue.put(text)
|
141 |
-
return frame
|
142 |
|
143 |
def real_time_analysis():
|
144 |
st.info("Listening... Say 'stop' to end the process.")
|
145 |
|
|
|
|
|
|
|
|
|
|
|
|
|
146 |
webrtc_ctx = webrtc_streamer(
|
147 |
key="real-time-audio",
|
148 |
mode=WebRtcMode.SENDONLY,
|
149 |
-
|
150 |
media_stream_constraints={"audio": True, "video": False},
|
151 |
)
|
152 |
|
153 |
-
|
154 |
-
|
155 |
-
|
156 |
-
|
157 |
|
158 |
-
|
159 |
-
|
|
|
160 |
|
161 |
-
|
162 |
-
|
|
|
163 |
|
164 |
-
|
165 |
-
|
166 |
-
|
167 |
-
|
|
|
168 |
|
169 |
-
|
170 |
-
|
171 |
|
172 |
-
|
173 |
-
|
174 |
-
|
175 |
-
|
176 |
-
|
177 |
-
def load_google_sheets_data():
|
178 |
-
try:
|
179 |
-
data = fetch_call_data(config["google_sheet_id"])
|
180 |
-
if data.empty:
|
181 |
-
st.warning("No data available in the Google Sheet.")
|
182 |
-
else:
|
183 |
-
return data
|
184 |
-
except Exception as e:
|
185 |
-
st.error(f"Error loading data from Google Sheets: {e}")
|
186 |
-
return None
|
187 |
|
188 |
def run_app():
|
189 |
st.set_page_config(page_title="Sales Call Assistant", layout="wide")
|
190 |
st.title("AI Sales Call Assistant")
|
191 |
|
192 |
-
st.markdown("""
|
193 |
-
<style>
|
194 |
-
html, body {
|
195 |
-
font-family: 'Roboto', sans-serif;
|
196 |
-
background-color: #f5f7fa;
|
197 |
-
}
|
198 |
-
.header-container {
|
199 |
-
background: linear-gradient(135deg, #2980b9, #6dd5fa, #ffffff);
|
200 |
-
padding: 20px;
|
201 |
-
border-radius: 15px;
|
202 |
-
margin-bottom: 30px;
|
203 |
-
text-align: center;
|
204 |
-
box-shadow: 0 4px 6px rgba(0, 0, 0, 0.1);
|
205 |
-
}
|
206 |
-
.section {
|
207 |
-
background: linear-gradient(135deg, #ffffff, #f5f7fa);
|
208 |
-
padding: 25px;
|
209 |
-
border-radius: 15px;
|
210 |
-
margin-bottom: 30px;
|
211 |
-
box-shadow: 0 4px 6px rgba(0, 0, 0, 0.1);
|
212 |
-
}
|
213 |
-
.header {
|
214 |
-
font-size: 2.5em;
|
215 |
-
font-weight: 800;
|
216 |
-
color: #2980b9;
|
217 |
-
margin: 0;
|
218 |
-
padding: 10px;
|
219 |
-
letter-spacing: 1px;
|
220 |
-
}
|
221 |
-
.subheader {
|
222 |
-
font-size: 1.8em;
|
223 |
-
font-weight: 600;
|
224 |
-
color: #2980b9;
|
225 |
-
margin-top: 20px;
|
226 |
-
margin-bottom: 10px;
|
227 |
-
text-align: left;
|
228 |
-
}
|
229 |
-
.table-container {
|
230 |
-
background: #ffffff;
|
231 |
-
padding: 20px;
|
232 |
-
border-radius: 10px;
|
233 |
-
margin: 20px 0;
|
234 |
-
box-shadow: 0 2px 4px rgba(0, 0, 0, 0.1);
|
235 |
-
}
|
236 |
-
.stButton > button {
|
237 |
-
background: linear-gradient(135deg, #2980b9, #6dd5fa);
|
238 |
-
color: white;
|
239 |
-
border: none;
|
240 |
-
padding: 10px 20px;
|
241 |
-
border-radius: 5px;
|
242 |
-
transition: all 0.3s ease;
|
243 |
-
box-shadow: 0 2px 4px rgba(0, 0, 0, 0.1);
|
244 |
-
}
|
245 |
-
.stButton > button:hover {
|
246 |
-
background: linear-gradient(135deg, #2396dc, #6dd5fa);
|
247 |
-
box-shadow: 0 4px 6px rgba(0, 0, 0, 0.2);
|
248 |
-
}
|
249 |
-
.stTabs [data-baseweb="tab-list"] {
|
250 |
-
gap: 24px;
|
251 |
-
background: #f5f7fa;
|
252 |
-
padding: 10px;
|
253 |
-
border-radius: 10px;
|
254 |
-
}
|
255 |
-
.stTabs [data-baseweb="tab"] {
|
256 |
-
background-color: transparent;
|
257 |
-
border-radius: 4px;
|
258 |
-
color: #2980b9;
|
259 |
-
font-weight: 600;
|
260 |
-
padding: 10px 16px;
|
261 |
-
}
|
262 |
-
.stTabs [aria-selected="true"] {
|
263 |
-
background: linear-gradient(120deg, #2980b9, #6dd5fa);
|
264 |
-
color: white;
|
265 |
-
}
|
266 |
-
.success {
|
267 |
-
background: linear-gradient(135deg, #43A047, #2E7D32);
|
268 |
-
color: white;
|
269 |
-
padding: 10px;
|
270 |
-
border-radius: 5px;
|
271 |
-
margin: 10px 0;
|
272 |
-
}
|
273 |
-
.error {
|
274 |
-
background: linear-gradient(135deg, #E53935, #C62828);
|
275 |
-
color: white;
|
276 |
-
padding: 10px;
|
277 |
-
border-radius: 5px;
|
278 |
-
margin: 10px 0;
|
279 |
-
}
|
280 |
-
.warning {
|
281 |
-
background: linear-gradient(135deg, #FB8C00, #F57C00);
|
282 |
-
color: white;
|
283 |
-
padding: 10px;
|
284 |
-
border-radius: 5px;
|
285 |
-
margin: 10px 0;
|
286 |
-
}
|
287 |
-
</style>
|
288 |
-
""", unsafe_allow_html=True)
|
289 |
-
|
290 |
-
st.markdown("""
|
291 |
-
<div class="header-container">
|
292 |
-
<h1 class="header">AI Sales Call Assistant</h1>
|
293 |
-
</div>
|
294 |
-
""", unsafe_allow_html=True)
|
295 |
-
|
296 |
st.sidebar.title("Navigation")
|
297 |
app_mode = st.sidebar.radio("Choose a mode:", ["Real-Time Call Analysis", "Dashboard"])
|
298 |
|
299 |
if app_mode == "Real-Time Call Analysis":
|
300 |
-
st.markdown('<div class="section">', unsafe_allow_html=True)
|
301 |
st.header("Real-Time Sales Call Analysis")
|
302 |
-
|
303 |
-
if st.button("Start Listening"):
|
304 |
-
real_time_analysis()
|
305 |
|
306 |
elif app_mode == "Dashboard":
|
307 |
-
st.markdown('<div class="section">', unsafe_allow_html=True)
|
308 |
st.header("Call Summaries and Sentiment Analysis")
|
309 |
-
|
310 |
-
|
311 |
-
|
|
|
|
|
|
|
312 |
sentiment_counts = data['Sentiment'].value_counts()
|
313 |
-
|
314 |
-
|
315 |
-
product_mentions_df = pd.DataFrame(list(product_mentions.items()), columns=['Product', 'Count'])
|
316 |
-
|
317 |
col1, col2 = st.columns(2)
|
318 |
with col1:
|
319 |
st.subheader("Sentiment Distribution")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
320 |
fig_bar = px.bar(
|
321 |
x=sentiment_counts.index,
|
322 |
y=sentiment_counts.values,
|
@@ -331,46 +252,41 @@ def run_app():
|
|
331 |
)
|
332 |
st.plotly_chart(fig_bar)
|
333 |
|
334 |
-
|
335 |
-
st.subheader("Most Mentioned Products")
|
336 |
-
fig_products = px.pie(
|
337 |
-
values=product_mentions_df['Count'],
|
338 |
-
names=product_mentions_df['Product'],
|
339 |
-
title='Most Mentioned Products'
|
340 |
-
)
|
341 |
-
st.plotly_chart(fig_products)
|
342 |
-
|
343 |
st.subheader("All Calls")
|
344 |
display_data = data.copy()
|
345 |
display_data['Summary Preview'] = display_data['Summary'].str[:100] + '...'
|
346 |
st.dataframe(display_data[['Call ID', 'Chunk', 'Sentiment', 'Summary Preview', 'Overall Sentiment']])
|
347 |
|
|
|
348 |
unique_call_ids = data[data['Call ID'] != '']['Call ID'].unique()
|
349 |
call_id = st.selectbox("Select a Call ID to view details:", unique_call_ids)
|
350 |
|
|
|
351 |
call_details = data[data['Call ID'] == call_id]
|
352 |
if not call_details.empty:
|
353 |
st.subheader("Detailed Call Information")
|
354 |
st.write(f"**Call ID:** {call_id}")
|
355 |
st.write(f"**Overall Sentiment:** {call_details.iloc[0]['Overall Sentiment']}")
|
356 |
|
|
|
357 |
st.subheader("Full Call Summary")
|
358 |
st.text_area("Summary:",
|
359 |
value=call_details.iloc[0]['Summary'],
|
360 |
height=200,
|
361 |
disabled=True)
|
362 |
|
|
|
363 |
st.subheader("Conversation Chunks")
|
364 |
for _, row in call_details.iterrows():
|
365 |
if pd.notna(row['Chunk']):
|
366 |
st.write(f"**Chunk:** {row['Chunk']}")
|
367 |
st.write(f"**Sentiment:** {row['Sentiment']}")
|
368 |
-
st.write("---")
|
369 |
else:
|
370 |
st.error("No details available for the selected Call ID.")
|
371 |
-
|
372 |
-
|
373 |
-
st.markdown('</div>', unsafe_allow_html=True)
|
374 |
|
375 |
if __name__ == "__main__":
|
376 |
-
run_app()
|
|
|
1 |
+
from streamlit_webrtc import webrtc_streamer, WebRtcMode
|
2 |
from sentiment_analysis import analyze_sentiment, transcribe_with_chunks
|
3 |
from product_recommender import ProductRecommender
|
4 |
from objection_handler import ObjectionHandler
|
|
|
15 |
import wave
|
16 |
import threading
|
17 |
import queue
|
|
|
18 |
|
19 |
# Initialize components
|
20 |
+
objection_handler = ObjectionHandler("objections.csv") # Use relative path
|
21 |
+
product_recommender = ProductRecommender("recommendations.csv") # Use relative path
|
22 |
model = SentenceTransformer('all-MiniLM-L6-v2')
|
23 |
|
24 |
# Queue to hold transcribed text
|
25 |
transcription_queue = queue.Queue()
|
26 |
|
27 |
def generate_comprehensive_summary(chunks):
|
28 |
+
"""
|
29 |
+
Generate a comprehensive summary from conversation chunks
|
30 |
+
"""
|
31 |
+
# Extract full text from chunks
|
32 |
full_text = " ".join([chunk[0] for chunk in chunks])
|
33 |
+
|
34 |
+
# Perform basic analysis
|
35 |
total_chunks = len(chunks)
|
36 |
sentiments = [chunk[1] for chunk in chunks]
|
37 |
|
38 |
+
# Determine overall conversation context
|
39 |
context_keywords = {
|
40 |
'product_inquiry': ['dress', 'product', 'price', 'stock'],
|
41 |
'pricing': ['cost', 'price', 'budget'],
|
42 |
'negotiation': ['installment', 'payment', 'manage']
|
43 |
}
|
44 |
|
45 |
+
# Detect conversation themes
|
46 |
themes = []
|
47 |
for keyword_type, keywords in context_keywords.items():
|
48 |
if any(keyword.lower() in full_text.lower() for keyword in keywords):
|
49 |
themes.append(keyword_type)
|
50 |
|
51 |
+
# Basic sentiment analysis
|
52 |
positive_count = sentiments.count('POSITIVE')
|
53 |
negative_count = sentiments.count('NEGATIVE')
|
54 |
neutral_count = sentiments.count('NEUTRAL')
|
55 |
|
56 |
+
# Key interaction highlights
|
57 |
key_interactions = []
|
58 |
for chunk in chunks:
|
59 |
if any(keyword.lower() in chunk[0].lower() for keyword in ['price', 'dress', 'stock', 'installment']):
|
60 |
key_interactions.append(chunk[0])
|
61 |
|
62 |
+
# Construct summary
|
63 |
summary = f"Conversation Summary:\n"
|
64 |
|
65 |
+
# Context and themes
|
66 |
if 'product_inquiry' in themes:
|
67 |
summary += "• Customer initiated a product inquiry about items.\n"
|
68 |
|
|
|
72 |
if 'negotiation' in themes:
|
73 |
summary += "• Customer and seller explored flexible payment options.\n"
|
74 |
|
75 |
+
# Sentiment insights
|
76 |
summary += f"\nConversation Sentiment:\n"
|
77 |
summary += f"• Positive Interactions: {positive_count}\n"
|
78 |
summary += f"• Negative Interactions: {negative_count}\n"
|
79 |
summary += f"• Neutral Interactions: {neutral_count}\n"
|
80 |
|
81 |
+
# Key highlights
|
82 |
summary += "\nKey Conversation Points:\n"
|
83 |
+
for interaction in key_interactions[:3]: # Limit to top 3 key points
|
84 |
summary += f"• {interaction}\n"
|
85 |
|
86 |
+
# Conversation outcome
|
87 |
if positive_count > negative_count:
|
88 |
summary += "\nOutcome: Constructive and potentially successful interaction."
|
89 |
elif negative_count > positive_count:
|
|
|
117 |
def handle_objection(text):
|
118 |
query_embedding = model.encode([text])
|
119 |
distances, indices = objection_handler.index.search(query_embedding, 1)
|
120 |
+
if distances[0][0] < 1.5: # Adjust similarity threshold as needed
|
121 |
responses = objection_handler.handle_objection(text)
|
122 |
return "\n".join(responses) if responses else "No objection response found."
|
123 |
return "No objection response found."
|
124 |
|
125 |
def transcribe_audio(audio_bytes, sample_rate=16000):
|
126 |
+
"""Transcribe audio using the transcribe_with_chunks function from sentiment_analysis.py."""
|
127 |
try:
|
128 |
+
# Save audio bytes to a temporary WAV file
|
129 |
with BytesIO() as wav_buffer:
|
130 |
with wave.open(wav_buffer, 'wb') as wf:
|
131 |
+
wf.setnchannels(1) # Mono audio
|
132 |
+
wf.setsampwidth(2) # 2 bytes for int16
|
133 |
+
wf.setframerate(sample_rate) # Sample rate
|
134 |
wf.writeframes(audio_bytes)
|
135 |
|
136 |
+
# Use the transcribe_with_chunks function from sentiment_analysis.py
|
137 |
+
chunks = transcribe_with_chunks({}) # Pass an empty objections_dict for now
|
138 |
if chunks:
|
139 |
+
return chunks[-1][0] # Return the latest transcribed text
|
|
|
140 |
except Exception as e:
|
141 |
+
print(f"Error transcribing audio: {e}")
|
142 |
return None
|
143 |
|
144 |
+
def audio_processing_thread(audio_frame):
|
145 |
+
"""Thread function to process audio frames."""
|
146 |
+
# Convert audio frame to bytes
|
147 |
+
audio_data = audio_frame.to_ndarray()
|
148 |
+
print(f"Audio data shape: {audio_data.shape}") # Debug: Check audio data shape
|
149 |
+
print(f"Audio data sample: {audio_data[:10]}") # Debug: Check first 10 samples
|
150 |
+
|
151 |
+
audio_bytes = (audio_data * 32767).astype(np.int16).tobytes() # Convert to int16 format
|
152 |
|
153 |
+
# Transcribe the audio
|
154 |
+
text = transcribe_audio(audio_bytes)
|
155 |
+
if text:
|
156 |
+
transcription_queue.put(text) # Add transcribed text to the queue
|
|
|
|
|
|
|
|
|
|
|
157 |
|
158 |
def real_time_analysis():
|
159 |
st.info("Listening... Say 'stop' to end the process.")
|
160 |
|
161 |
+
def audio_frame_callback(audio_frame):
|
162 |
+
# Start a new thread to process the audio frame
|
163 |
+
threading.Thread(target=audio_processing_thread, args=(audio_frame,)).start()
|
164 |
+
return audio_frame
|
165 |
+
|
166 |
+
# Start WebRTC audio stream
|
167 |
webrtc_ctx = webrtc_streamer(
|
168 |
key="real-time-audio",
|
169 |
mode=WebRtcMode.SENDONLY,
|
170 |
+
audio_frame_callback=audio_frame_callback,
|
171 |
media_stream_constraints={"audio": True, "video": False},
|
172 |
)
|
173 |
|
174 |
+
# Display transcribed text from the queue
|
175 |
+
while not transcription_queue.empty():
|
176 |
+
text = transcription_queue.get()
|
177 |
+
st.write(f"*Recognized Text:* {text}")
|
178 |
|
179 |
+
# Analyze sentiment
|
180 |
+
sentiment, score = analyze_sentiment(text)
|
181 |
+
st.write(f"*Sentiment:* {sentiment} (Score: {score})")
|
182 |
|
183 |
+
# Handle objection
|
184 |
+
objection_response = handle_objection(text)
|
185 |
+
st.write(f"*Objection Response:* {objection_response}")
|
186 |
|
187 |
+
# Get product recommendation
|
188 |
+
recommendations = []
|
189 |
+
if is_valid_input(text) and is_relevant_sentiment(score):
|
190 |
+
query_embedding = model.encode([text])
|
191 |
+
distances, indices = product_recommender.index.search(query_embedding, 1)
|
192 |
|
193 |
+
if distances[0][0] < 1.5: # Similarity threshold
|
194 |
+
recommendations = product_recommender.get_recommendations(text)
|
195 |
|
196 |
+
if recommendations:
|
197 |
+
st.write("*Product Recommendations:*")
|
198 |
+
for rec in recommendations:
|
199 |
+
st.write(rec)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
200 |
|
201 |
def run_app():
|
202 |
st.set_page_config(page_title="Sales Call Assistant", layout="wide")
|
203 |
st.title("AI Sales Call Assistant")
|
204 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
205 |
st.sidebar.title("Navigation")
|
206 |
app_mode = st.sidebar.radio("Choose a mode:", ["Real-Time Call Analysis", "Dashboard"])
|
207 |
|
208 |
if app_mode == "Real-Time Call Analysis":
|
|
|
209 |
st.header("Real-Time Sales Call Analysis")
|
210 |
+
real_time_analysis()
|
|
|
|
|
211 |
|
212 |
elif app_mode == "Dashboard":
|
|
|
213 |
st.header("Call Summaries and Sentiment Analysis")
|
214 |
+
try:
|
215 |
+
data = fetch_call_data(config["google_sheet_id"])
|
216 |
+
if data.empty:
|
217 |
+
st.warning("No data available in the Google Sheet.")
|
218 |
+
else:
|
219 |
+
# Sentiment Visualizations
|
220 |
sentiment_counts = data['Sentiment'].value_counts()
|
221 |
+
|
222 |
+
# Pie Chart
|
|
|
|
|
223 |
col1, col2 = st.columns(2)
|
224 |
with col1:
|
225 |
st.subheader("Sentiment Distribution")
|
226 |
+
fig_pie = px.pie(
|
227 |
+
values=sentiment_counts.values,
|
228 |
+
names=sentiment_counts.index,
|
229 |
+
title='Call Sentiment Breakdown',
|
230 |
+
color_discrete_map={
|
231 |
+
'POSITIVE': 'green',
|
232 |
+
'NEGATIVE': 'red',
|
233 |
+
'NEUTRAL': 'blue'
|
234 |
+
}
|
235 |
+
)
|
236 |
+
st.plotly_chart(fig_pie)
|
237 |
+
|
238 |
+
# Bar Chart
|
239 |
+
with col2:
|
240 |
+
st.subheader("Sentiment Counts")
|
241 |
fig_bar = px.bar(
|
242 |
x=sentiment_counts.index,
|
243 |
y=sentiment_counts.values,
|
|
|
252 |
)
|
253 |
st.plotly_chart(fig_bar)
|
254 |
|
255 |
+
# Existing Call Details Section
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
256 |
st.subheader("All Calls")
|
257 |
display_data = data.copy()
|
258 |
display_data['Summary Preview'] = display_data['Summary'].str[:100] + '...'
|
259 |
st.dataframe(display_data[['Call ID', 'Chunk', 'Sentiment', 'Summary Preview', 'Overall Sentiment']])
|
260 |
|
261 |
+
# Dropdown to select Call ID
|
262 |
unique_call_ids = data[data['Call ID'] != '']['Call ID'].unique()
|
263 |
call_id = st.selectbox("Select a Call ID to view details:", unique_call_ids)
|
264 |
|
265 |
+
# Display selected Call ID details
|
266 |
call_details = data[data['Call ID'] == call_id]
|
267 |
if not call_details.empty:
|
268 |
st.subheader("Detailed Call Information")
|
269 |
st.write(f"**Call ID:** {call_id}")
|
270 |
st.write(f"**Overall Sentiment:** {call_details.iloc[0]['Overall Sentiment']}")
|
271 |
|
272 |
+
# Expand summary section
|
273 |
st.subheader("Full Call Summary")
|
274 |
st.text_area("Summary:",
|
275 |
value=call_details.iloc[0]['Summary'],
|
276 |
height=200,
|
277 |
disabled=True)
|
278 |
|
279 |
+
# Show all chunks for the selected call
|
280 |
st.subheader("Conversation Chunks")
|
281 |
for _, row in call_details.iterrows():
|
282 |
if pd.notna(row['Chunk']):
|
283 |
st.write(f"**Chunk:** {row['Chunk']}")
|
284 |
st.write(f"**Sentiment:** {row['Sentiment']}")
|
285 |
+
st.write("---") # Separator between chunks
|
286 |
else:
|
287 |
st.error("No details available for the selected Call ID.")
|
288 |
+
except Exception as e:
|
289 |
+
st.error(f"Error loading dashboard: {e}")
|
|
|
290 |
|
291 |
if __name__ == "__main__":
|
292 |
+
run_app()
|