Spaces:
Running
on
Zero
Running
on
Zero
from typing import Any, Dict, Optional | |
from diffusers.models import AutoencoderKL, UNet2DConditionModel | |
from diffusers.schedulers import KarrasDiffusionSchedulers | |
import numpy | |
import torch | |
import torch.nn as nn | |
import torch.utils.checkpoint | |
import torch.distributed | |
import transformers | |
from collections import OrderedDict | |
from PIL import Image | |
from torchvision import transforms | |
from transformers import CLIPImageProcessor, CLIPTextModel, CLIPTokenizer | |
from diffusers.pipelines.stable_diffusion import StableDiffusionPipelineOutput | |
randn_tensor = torch.randn | |
import diffusers | |
from diffusers import ( | |
AutoencoderKL, | |
DDPMScheduler, | |
DiffusionPipeline, | |
EulerAncestralDiscreteScheduler, | |
UNet2DConditionModel, | |
ImagePipelineOutput, | |
) | |
from diffusers.image_processor import VaeImageProcessor | |
from diffusers.models.attention_processor import ( | |
Attention, | |
AttnProcessor, | |
XFormersAttnProcessor, | |
AttnProcessor2_0, | |
) | |
from diffusers.utils.import_utils import is_xformers_available | |
import spaces | |
def extract_into_tensor(a, t, x_shape): | |
b, *_ = t.shape | |
out = a.gather(-1, t) | |
return out.reshape(b, *((1,) * (len(x_shape) - 1))) | |
def to_rgb_image(maybe_rgba: Image.Image): | |
if maybe_rgba.mode == "RGB": | |
return maybe_rgba | |
elif maybe_rgba.mode == "RGBA": | |
rgba = maybe_rgba | |
img = numpy.random.randint( | |
255, 256, size=[rgba.size[1], rgba.size[0], 3], dtype=numpy.uint8 | |
) | |
img = Image.fromarray(img, "RGB") | |
img.paste(rgba, mask=rgba.getchannel("A")) | |
return img | |
else: | |
raise ValueError("Unsupported image type.", maybe_rgba.mode) | |
class ReferenceOnlyAttnProc(torch.nn.Module): | |
def __init__(self, chained_proc, enabled=False, name=None) -> None: | |
super().__init__() | |
self.enabled = enabled | |
self.chained_proc = chained_proc | |
self.name = name | |
def __call__( | |
self, | |
attn: Attention, | |
hidden_states, | |
encoder_hidden_states=None, | |
attention_mask=None, | |
mode="w", | |
ref_dict: dict = None, | |
is_cfg_guidance=False, | |
) -> Any: | |
if encoder_hidden_states is None: | |
encoder_hidden_states = hidden_states | |
if self.enabled and is_cfg_guidance: | |
res0 = self.chained_proc( | |
attn, hidden_states[:1], encoder_hidden_states[:1], attention_mask | |
) | |
hidden_states = hidden_states[1:] | |
encoder_hidden_states = encoder_hidden_states[1:] | |
if self.enabled: | |
if mode == "w": | |
ref_dict[self.name] = encoder_hidden_states | |
elif mode == "r": | |
encoder_hidden_states = torch.cat( | |
[encoder_hidden_states, ref_dict.pop(self.name)], dim=1 | |
) | |
elif mode == "m": | |
encoder_hidden_states = torch.cat( | |
[encoder_hidden_states, ref_dict[self.name]], dim=1 | |
) | |
elif mode == "c": | |
encoder_hidden_states = torch.cat( | |
[encoder_hidden_states, encoder_hidden_states], dim=1 | |
) | |
else: | |
assert False, mode | |
res = self.chained_proc( | |
attn, hidden_states, encoder_hidden_states, attention_mask | |
) | |
if self.enabled and is_cfg_guidance: | |
res = torch.cat([res0, res]) | |
return res | |
class RefOnlyNoisedUNet(torch.nn.Module): | |
def __init__( | |
self, | |
unet: UNet2DConditionModel, | |
train_sched: DDPMScheduler, | |
val_sched: EulerAncestralDiscreteScheduler, | |
) -> None: | |
super().__init__() | |
self.unet = unet | |
self.train_sched = train_sched | |
self.val_sched = val_sched | |
unet_lora_attn_procs = dict() | |
for name, _ in unet.attn_processors.items(): | |
if torch.__version__ >= "2.0": | |
default_attn_proc = AttnProcessor2_0() | |
elif is_xformers_available(): | |
default_attn_proc = XFormersAttnProcessor() | |
else: | |
default_attn_proc = AttnProcessor() | |
unet_lora_attn_procs[name] = ReferenceOnlyAttnProc( | |
default_attn_proc, enabled=name.endswith("attn1.processor"), name=name | |
) | |
unet.set_attn_processor(unet_lora_attn_procs) | |
def __getattr__(self, name: str): | |
try: | |
return super().__getattr__(name) | |
except AttributeError: | |
return getattr(self.unet, name) | |
def forward_cond( | |
self, | |
noisy_cond_lat, | |
timestep, | |
encoder_hidden_states, | |
class_labels, | |
ref_dict, | |
is_cfg_guidance, | |
**kwargs, | |
): | |
if is_cfg_guidance: | |
encoder_hidden_states = encoder_hidden_states[1:] | |
class_labels = class_labels[1:] | |
self.unet( | |
noisy_cond_lat, | |
timestep, | |
encoder_hidden_states=encoder_hidden_states, | |
class_labels=class_labels, | |
cross_attention_kwargs=dict(mode="w", ref_dict=ref_dict), | |
**kwargs, | |
) | |
def forward( | |
self, | |
sample, | |
timestep, | |
encoder_hidden_states, | |
class_labels=None, | |
*args, | |
cross_attention_kwargs, | |
down_block_res_samples=None, | |
mid_block_res_sample=None, | |
forward_cond_state=True, | |
**kwargs, | |
): | |
cond_lat = cross_attention_kwargs["cond_lat"] | |
is_cfg_guidance = cross_attention_kwargs.get("is_cfg_guidance", False) | |
noise = torch.randn_like(cond_lat) | |
if self.training: | |
noisy_cond_lat = self.train_sched.add_noise(cond_lat, noise, timestep) | |
noisy_cond_lat = self.train_sched.scale_model_input( | |
noisy_cond_lat, timestep | |
) | |
else: | |
noisy_cond_lat = self.val_sched.add_noise( | |
cond_lat, noise, timestep.reshape(-1) | |
) | |
noisy_cond_lat = self.val_sched.scale_model_input( | |
noisy_cond_lat, timestep.reshape(-1) | |
) | |
ref_dict = {} | |
if "dont_forward_cond_state" not in cross_attention_kwargs.keys(): | |
self.forward_cond( | |
noisy_cond_lat, | |
timestep, | |
encoder_hidden_states, | |
class_labels, | |
ref_dict, | |
is_cfg_guidance, | |
**kwargs, | |
) | |
mode = "r" | |
else: | |
mode = "c" | |
weight_dtype = self.unet.dtype | |
return self.unet( | |
sample, | |
timestep, | |
encoder_hidden_states, | |
*args, | |
class_labels=class_labels, | |
cross_attention_kwargs=dict( | |
mode=mode, ref_dict=ref_dict, is_cfg_guidance=is_cfg_guidance | |
), | |
down_block_additional_residuals=[ | |
sample.to(dtype=weight_dtype) for sample in down_block_res_samples | |
] | |
if down_block_res_samples is not None | |
else None, | |
mid_block_additional_residual=( | |
mid_block_res_sample.to(dtype=weight_dtype) | |
if mid_block_res_sample is not None | |
else None | |
), | |
**kwargs, | |
) | |
def scale_latents(latents): | |
latents = (latents - 0.22) * 0.75 | |
return latents | |
def unscale_latents(latents): | |
latents = latents / 0.75 + 0.22 | |
return latents | |
def scale_image(image): | |
image = image * 0.5 / 0.8 | |
return image | |
def unscale_image(image): | |
image = image / 0.5 * 0.8 | |
return image | |
class DepthControlUNet(torch.nn.Module): | |
def __init__( | |
self, | |
unet: RefOnlyNoisedUNet, | |
controlnet: Optional[diffusers.ControlNetModel] = None, | |
conditioning_scale=1.0, | |
) -> None: | |
super().__init__() | |
self.unet = unet | |
if controlnet is None: | |
self.controlnet = diffusers.ControlNetModel.from_unet(unet.unet) | |
else: | |
self.controlnet = controlnet | |
DefaultAttnProc = AttnProcessor2_0 | |
if is_xformers_available(): | |
DefaultAttnProc = XFormersAttnProcessor | |
self.controlnet.set_attn_processor(DefaultAttnProc()) | |
self.conditioning_scale = conditioning_scale | |
def __getattr__(self, name: str): | |
try: | |
return super().__getattr__(name) | |
except AttributeError: | |
return getattr(self.unet, name) | |
def forward( | |
self, | |
sample, | |
timestep, | |
encoder_hidden_states, | |
class_labels=None, | |
*args, | |
cross_attention_kwargs: dict, | |
**kwargs, | |
): | |
cross_attention_kwargs = dict(cross_attention_kwargs) | |
control_depth = cross_attention_kwargs.pop("control_depth") | |
down_block_res_samples, mid_block_res_sample = self.controlnet( | |
sample, | |
timestep, | |
encoder_hidden_states=encoder_hidden_states, | |
controlnet_cond=control_depth, | |
conditioning_scale=self.conditioning_scale, | |
return_dict=False, | |
) | |
return self.unet( | |
sample, | |
timestep, | |
encoder_hidden_states=encoder_hidden_states, | |
down_block_res_samples=down_block_res_samples, | |
mid_block_res_sample=mid_block_res_sample, | |
cross_attention_kwargs=cross_attention_kwargs, | |
) | |
class ModuleListDict(torch.nn.Module): | |
def __init__(self, procs: dict) -> None: | |
super().__init__() | |
self.keys = sorted(procs.keys()) | |
self.values = torch.nn.ModuleList(procs[k] for k in self.keys) | |
def __getitem__(self, key): | |
return self.values[self.keys.index(key)] | |
class SuperNet(torch.nn.Module): | |
def __init__(self, state_dict: Dict[str, torch.Tensor]): | |
super().__init__() | |
state_dict = OrderedDict((k, state_dict[k]) for k in sorted(state_dict.keys())) | |
self.layers = torch.nn.ModuleList(state_dict.values()) | |
self.mapping = dict(enumerate(state_dict.keys())) | |
self.rev_mapping = {v: k for k, v in enumerate(state_dict.keys())} | |
# .processor for unet, .self_attn for text encoder | |
self.split_keys = [".processor", ".self_attn"] | |
# we add a hook to state_dict() and load_state_dict() so that the | |
# naming fits with `unet.attn_processors` | |
def map_to(module, state_dict, *args, **kwargs): | |
new_state_dict = {} | |
for key, value in state_dict.items(): | |
num = int(key.split(".")[1]) # 0 is always "layers" | |
new_key = key.replace(f"layers.{num}", module.mapping[num]) | |
new_state_dict[new_key] = value | |
return new_state_dict | |
def remap_key(key, state_dict): | |
for k in self.split_keys: | |
if k in key: | |
return key.split(k)[0] + k | |
return key.split(".")[0] | |
def map_from(module, state_dict, *args, **kwargs): | |
all_keys = list(state_dict.keys()) | |
for key in all_keys: | |
replace_key = remap_key(key, state_dict) | |
new_key = key.replace( | |
replace_key, f"layers.{module.rev_mapping[replace_key]}" | |
) | |
state_dict[new_key] = state_dict[key] | |
del state_dict[key] | |
self._register_state_dict_hook(map_to) | |
self._register_load_state_dict_pre_hook(map_from, with_module=True) | |
class Zero123PlusPipeline(diffusers.StableDiffusionPipeline): | |
tokenizer: transformers.CLIPTokenizer | |
text_encoder: transformers.CLIPTextModel | |
vision_encoder: transformers.CLIPVisionModelWithProjection | |
feature_extractor_clip: transformers.CLIPImageProcessor | |
unet: UNet2DConditionModel | |
scheduler: diffusers.schedulers.KarrasDiffusionSchedulers | |
vae: AutoencoderKL | |
ramping: nn.Linear | |
feature_extractor_vae: transformers.CLIPImageProcessor | |
depth_transforms_multi = transforms.Compose( | |
[transforms.ToTensor(), transforms.Normalize([0.5], [0.5])] | |
) | |
def __init__( | |
self, | |
vae: AutoencoderKL, | |
text_encoder: CLIPTextModel, | |
tokenizer: CLIPTokenizer, | |
unet: UNet2DConditionModel, | |
scheduler: KarrasDiffusionSchedulers, | |
vision_encoder: transformers.CLIPVisionModelWithProjection, | |
feature_extractor_clip: CLIPImageProcessor, | |
feature_extractor_vae: CLIPImageProcessor, | |
ramping_coefficients: Optional[list] = None, | |
safety_checker=None, | |
): | |
DiffusionPipeline.__init__(self) | |
self.register_modules( | |
vae=vae, | |
text_encoder=text_encoder, | |
tokenizer=tokenizer, | |
unet=unet, | |
scheduler=scheduler, | |
safety_checker=None, | |
vision_encoder=vision_encoder, | |
feature_extractor_clip=feature_extractor_clip, | |
feature_extractor_vae=feature_extractor_vae, | |
) | |
self.register_to_config(ramping_coefficients=ramping_coefficients) | |
self.vae_scale_factor = 2 ** (len(self.vae.config.block_out_channels) - 1) | |
self.image_processor = VaeImageProcessor(vae_scale_factor=self.vae_scale_factor) | |
def prepare(self): | |
train_sched = DDPMScheduler.from_config(self.scheduler.config) | |
if isinstance(self.unet, UNet2DConditionModel): | |
self.unet = RefOnlyNoisedUNet(self.unet, train_sched, self.scheduler).eval() | |
def add_controlnet( | |
self, | |
controlnet: Optional[diffusers.ControlNetModel] = None, | |
conditioning_scale=1.0, | |
): | |
self.prepare() | |
self.unet = DepthControlUNet(self.unet, controlnet, conditioning_scale) | |
return SuperNet(OrderedDict([("controlnet", self.unet.controlnet)])) | |
def encode_condition_image(self, image: torch.Tensor): | |
image = self.vae.encode(image).latent_dist.sample() | |
return image | |
def edit_latents( | |
self, | |
image_guidance: Image.Image, | |
multiview_source_image: Image.Image = None, | |
edit_strength: float = 1.0, | |
prompt="", | |
*args, | |
guidance_scale=0.0, | |
output_type: Optional[str] = "pil", | |
width=640, | |
height=960, | |
num_inference_steps=28, | |
return_dict=True, | |
**kwargs, | |
): | |
self.prepare() | |
if image_guidance is None: | |
raise ValueError( | |
"Inputting embeddings not supported for this pipeline. Please pass an image." | |
) | |
if multiview_source_image is None: | |
raise ValueError("Multiview source image is required for this pipeline.") | |
assert not isinstance(image_guidance, torch.Tensor) | |
assert not isinstance(multiview_source_image, torch.Tensor) | |
image_guidance = to_rgb_image(image_guidance) | |
image_source = to_rgb_image(multiview_source_image) | |
image_guidance_1 = self.feature_extractor_vae( | |
images=image_guidance, return_tensors="pt" | |
).pixel_values | |
image_guidance_2 = self.feature_extractor_clip( | |
images=image_source, return_tensors="pt" | |
).pixel_values | |
image_guidance = image_guidance_1.to( | |
device=self.vae.device, dtype=self.vae.dtype | |
) | |
image_guidance_2 = image_guidance_2.to( | |
device=self.vae.device, dtype=self.vae.dtype | |
) | |
cond_lat = self.encode_condition_image(image_guidance) | |
# if guidance_scale > 1: | |
negative_lat = self.encode_condition_image(torch.zeros_like(image_guidance)) | |
cond_lat = torch.cat([negative_lat, cond_lat]) | |
encoded = self.vision_encoder(image_guidance_2, output_hidden_states=False) | |
global_embeds = encoded.image_embeds | |
global_embeds = global_embeds.unsqueeze(-2) | |
if hasattr(self, "encode_prompt"): | |
encoder_hidden_states = self.encode_prompt(prompt, self.device, 1, False)[0] | |
else: | |
encoder_hidden_states = self._encode_prompt(prompt, self.device, 1, False) | |
ramp = global_embeds.new_tensor(self.config.ramping_coefficients).unsqueeze(-1) | |
encoder_hidden_states = encoder_hidden_states + global_embeds * ramp | |
cak = dict(cond_lat=cond_lat) | |
mv_image = ( | |
torch.from_numpy(numpy.array(multiview_source_image)).to(self.vae.device) | |
/ 255.0 | |
) | |
mv_image = ( | |
mv_image.permute(2, 0, 1) | |
.to(self.vae.device) | |
.to(self.vae.dtype) | |
.unsqueeze(0) | |
) | |
latents = ( | |
self.vae.encode(mv_image * 2.0 - 1.0).latent_dist.sample() | |
* self.vae.config.scaling_factor | |
) | |
latents: torch.Tensor = ( | |
super() | |
.__call__( | |
None, | |
*args, | |
cross_attention_kwargs=cak, | |
guidance_scale=guidance_scale, | |
num_images_per_prompt=1, | |
prompt_embeds=encoder_hidden_states, | |
num_inference_steps=num_inference_steps, | |
output_type="latent", | |
width=width, | |
height=height, | |
latents=latents, | |
edit_strength=edit_strength, | |
**kwargs, | |
) | |
.images | |
) | |
latents = unscale_latents(latents) | |
if not output_type == "latent": | |
image = unscale_image( | |
self.vae.decode( | |
latents / self.vae.config.scaling_factor, return_dict=False | |
)[0] | |
) | |
else: | |
image = latents | |
image = self.image_processor.postprocess(image, output_type=output_type) | |
if not return_dict: | |
return (image,) | |
return ImagePipelineOutput(images=image) | |
def encode_target_images(self, images): | |
dtype = next(self.vae.parameters()).dtype | |
# equals to scaling images to [-1, 1] first and then call scale_image | |
images = (images - 0.5) / 0.8 # [-0.625, 0.625] | |
posterior = self.vae.encode(images.to(dtype)).latent_dist | |
latents = posterior.sample() * self.vae.config.scaling_factor | |
latents = scale_latents(latents) | |
return latents | |
def sdedit( | |
self, | |
image, | |
*args, | |
cond_image: Image.Image = None, | |
output_type: Optional[str] = "pil", | |
width=640, | |
height=960, | |
num_inference_steps=75, | |
edit_strength=1.0, | |
return_dict=True, | |
guidance_scale=0.0, | |
**kwargs, | |
): | |
self.prepare() | |
if image is None: | |
raise ValueError( | |
"Inputting embeddings not supported for this pipeline. Please pass an image." | |
) | |
assert not isinstance(image, torch.Tensor) | |
image = to_rgb_image(image) | |
# cond_lat = self.encode_condition_image(image_guidance) | |
if hasattr(self, "encode_prompt"): | |
encoder_hidden_states = self.encode_prompt([""], self.device, 1, False)[0] | |
else: | |
encoder_hidden_states = self._encode_prompt([""], self.device, 1, False) | |
# negative_lat = self.encode_condition_image(torch.zeros_like(image_guidance)) | |
# cond_lat = torch.cat([negative_lat, cond_lat]) | |
# encoded = self.vision_encoder(image_guidance_2, output_hidden_states=False) | |
# global_embeds = encoded.image_embeds | |
# global_embeds = global_embeds.unsqueeze(-2) | |
# prompt = "" | |
# ramp = global_embeds.new_tensor(self.config.ramping_coefficients).unsqueeze(-1) | |
# encoder_hidden_states = encoder_hidden_states + global_embeds * ramp | |
# cak = dict(cond_lat=cond_lat) | |
image = torch.from_numpy(numpy.array(image)).to(self.vae.device) / 255.0 | |
image = image.permute(2, 0, 1).unsqueeze(0) | |
if self.vae.dtype == torch.float16: | |
image = image.half() | |
# image = image.permute(2, 0, 1).to(self.vae.device).to(self.vae.dtype).unsqueeze(0) | |
latents = self.encode_target_images(image) | |
if cond_image is not None: | |
cond_image = to_rgb_image(cond_image) | |
cond_image = ( | |
torch.from_numpy(numpy.array(cond_image)).to(self.vae.device) / 255.0 | |
) | |
cond_image = cond_image.permute(2, 0, 1).unsqueeze(0) | |
if self.vae.dtype == torch.float16: | |
cond_image = cond_image.half() | |
cond_lat = self.encode_condition_image(cond_image) | |
else: | |
cond_lat = self.encode_condition_image(torch.zeros_like(image)).to( | |
self.vae.device | |
) | |
cak = dict(cond_lat=cond_lat, dont_forward_cond_state=True) | |
latents = self.forward_sdedit( | |
latents, | |
cross_attention_kwargs=cak, | |
guidance_scale=guidance_scale, | |
num_images_per_prompt=1, | |
prompt_embeds=encoder_hidden_states, | |
num_inference_steps=num_inference_steps, | |
output_type="latent", | |
width=width, | |
height=height, | |
edit_strength=edit_strength, | |
**kwargs, | |
).images | |
# latents = unscale_latents(latents) | |
if not output_type == "latent": | |
image = unscale_image( | |
self.vae.decode( | |
latents / self.vae.config.scaling_factor, return_dict=False | |
)[0] | |
) | |
else: | |
image = latents | |
image = self.image_processor.postprocess(image, output_type=output_type) | |
if not return_dict: | |
return (image,) | |
return ImagePipelineOutput(images=image) | |
def refine( | |
self, | |
image: Image.Image = None, | |
edit_image: Image.Image = None, | |
prompt: Optional[str] = "", | |
*args, | |
output_type: Optional[str] = "pil", | |
width=640, | |
height=960, | |
num_inference_steps=28, | |
edit_strength=1.0, | |
return_dict=True, | |
guidance_scale=4.0, | |
**kwargs, | |
): | |
self.prepare() | |
if image is None: | |
raise ValueError( | |
"Inputting embeddings not supported for this pipeline. Please pass an image." | |
) | |
assert not isinstance(image, torch.Tensor) | |
image = to_rgb_image(image) | |
# cond_lat = self.encode_condition_image(image_guidance) | |
if hasattr(self, "encode_prompt"): | |
encoder_hidden_states = self.encode_prompt(prompt, self.device, 1, False)[0] | |
else: | |
encoder_hidden_states = self._encode_prompt(prompt, self.device, 1, False) | |
# negative_lat = self.encode_condition_image(torch.zeros_like(image_guidance)) | |
# cond_lat = torch.cat([negative_lat, cond_lat]) | |
# encoded = self.vision_encoder(image_guidance_2, output_hidden_states=False) | |
# global_embeds = encoded.image_embeds | |
# global_embeds = global_embeds.unsqueeze(-2) | |
# prompt = "" | |
# ramp = global_embeds.new_tensor(self.config.ramping_coefficients).unsqueeze(-1) | |
# encoder_hidden_states = encoder_hidden_states + global_embeds * ramp | |
# cak = dict(cond_lat=cond_lat) | |
latents_edit = None | |
if edit_image is not None: | |
edit_image = to_rgb_image(edit_image) | |
edit_image = ( | |
torch.from_numpy(numpy.array(edit_image)).to(self.vae.device) / 255.0 | |
) | |
edit_image = edit_image.permute(2, 0, 1).unsqueeze(0) | |
if self.vae.dtype == torch.float16: | |
edit_image = edit_image.half() | |
latents_edit = self.encode_target_images(edit_image) | |
image = torch.from_numpy(numpy.array(image)).to(self.vae.device) / 255.0 | |
image = image.permute(2, 0, 1).unsqueeze(0) | |
if self.vae.dtype == torch.float16: | |
image = image.half() | |
# image = torch.nn.functional.interpolate( | |
# image, (height*4, width*4), mode="bilinear", align_corners=False) | |
# image = image[...,:320,:320] | |
height, width = image.shape[-2:] | |
# image = image[...,:640,:] | |
# image[...,:320,:] = torch.ones_like(image[...,:320,:]) | |
# image = image.permute(2, 0, 1).to(self.vae.device).to(self.vae.dtype).unsqueeze(0) | |
# height = height * 4 | |
# width = width * 4 | |
latents = self.encode_target_images(image) | |
# latents[...,-40:,:] = torch.randn_like(latents[...,-40:,:]) | |
cond_lat = self.encode_condition_image(torch.zeros_like(image)).to( | |
self.vae.device | |
) | |
cak = dict(cond_lat=cond_lat, dont_forward_cond_state=True) | |
latents = self.forward_pipeline( | |
latents_edit, | |
latents, | |
cross_attention_kwargs=cak, | |
guidance_scale=guidance_scale, | |
num_images_per_prompt=1, | |
prompt_embeds=encoder_hidden_states, | |
num_inference_steps=num_inference_steps, | |
output_type="latent", | |
width=width, | |
height=height, | |
edit_strength=edit_strength, | |
**kwargs, | |
).images | |
# latents = unscale_latents(latents) | |
if not output_type == "latent": | |
image = unscale_image( | |
self.vae.decode( | |
latents / self.vae.config.scaling_factor, return_dict=False | |
)[0] | |
) | |
else: | |
image = latents | |
image = self.image_processor.postprocess(image, output_type=output_type) | |
if not return_dict: | |
return (image,) | |
return ImagePipelineOutput(images=image) | |
def prepare_latents( | |
self, | |
batch_size, | |
num_channels_latents, | |
height, | |
width, | |
dtype, | |
device, | |
generator, | |
latents=None, | |
timestep=None, | |
): | |
shape = ( | |
batch_size, | |
num_channels_latents, | |
height // self.vae_scale_factor, | |
width // self.vae_scale_factor, | |
) | |
if isinstance(generator, list) and len(generator) != batch_size: | |
raise ValueError( | |
f"You have passed a list of generators of length {len(generator)}, but requested an effective batch" | |
f" size of {batch_size}. Make sure the batch size matches the length of the generators." | |
) | |
if latents is None: | |
latents = randn_tensor( | |
shape, generator=generator, device=device, dtype=dtype | |
) | |
# scale the initial noise by the standard deviation required by the scheduler | |
latents = latents * self.scheduler.init_noise_sigma | |
else: | |
if timestep is None: | |
raise ValueError( | |
"When passing `latents` you also need to pass `timestep`." | |
) | |
latents = latents.to(device) | |
noise = randn_tensor(shape, generator=generator, device=device, dtype=dtype) | |
# get latents | |
latents = self.scheduler.add_noise(latents, noise, timestep) | |
return latents | |
def forward_sdedit( | |
self, | |
latents: torch.Tensor, | |
cross_attention_kwargs: dict, | |
guidance_scale: float, | |
num_images_per_prompt: int, | |
prompt_embeds, | |
num_inference_steps: int, | |
output_type: str, | |
width: int, | |
height: int, | |
edit_strength: float = 1.0, | |
): | |
height = height or self.unet.config.sample_size * self.vae_scale_factor | |
width = width or self.unet.config.sample_size * self.vae_scale_factor | |
batch_size = prompt_embeds.shape[0] | |
generator = torch.Generator(device=latents.device) | |
device = self._execution_device | |
# here `guidance_scale` is defined analog to the guidance weight `w` of equation (2) | |
# of the Imagen paper: https://arxiv.org/pdf/2205.11487.pdf . `guidance_scale = 1` | |
# corresponds to doing no classifier free guidance. | |
do_classifier_free_guidance = guidance_scale > 1.0 | |
# 3. Encode input prompt | |
text_encoder_lora_scale = ( | |
cross_attention_kwargs.get("scale", None) | |
if cross_attention_kwargs is not None | |
else None | |
) | |
prompt_embeds = self._encode_prompt( | |
None, | |
device, | |
num_images_per_prompt, | |
do_classifier_free_guidance, | |
None, | |
prompt_embeds=prompt_embeds, | |
negative_prompt_embeds=None, | |
lora_scale=text_encoder_lora_scale, | |
) | |
# 4. Prepare timesteps | |
self.scheduler.set_timesteps(num_inference_steps, device=device) | |
# self.scheduler.timesteps = self.scheduler.timesteps | |
timesteps = self.scheduler.timesteps | |
timesteps = reversed(reversed(timesteps)[: int(edit_strength * len(timesteps))]) | |
# 5. Prepare latent variables | |
num_channels_latents = self.unet.config.in_channels | |
latents = self.prepare_latents( | |
batch_size * num_images_per_prompt, | |
num_channels_latents, | |
height, | |
width, | |
prompt_embeds.dtype, | |
device, | |
generator, | |
latents, | |
timesteps[0:1], | |
) | |
extra_step_kwargs = self.prepare_extra_step_kwargs(generator, 0.0) | |
# if do_classifier_free_guidance: | |
# cond_latent = cond_latent.expand(batch_size * 2, -1, -1, -1) | |
# 7. Denoising loop | |
num_warmup_steps = 0 | |
with self.progress_bar(total=len(timesteps)) as progress_bar: | |
for i, t in enumerate(timesteps): | |
# expand the latents if we are doing classifier free guidance | |
latent_model_input = ( | |
torch.cat([latents] * 2) if do_classifier_free_guidance else latents | |
) | |
latent_model_input = self.scheduler.scale_model_input( | |
latent_model_input, t | |
) | |
# latent_model_input = | |
# predict the noise residual | |
noise_pred = self.unet( | |
latent_model_input, | |
t, | |
encoder_hidden_states=prompt_embeds, | |
cross_attention_kwargs=cross_attention_kwargs, | |
return_dict=False, | |
)[0] | |
# exit(0)/ | |
# perform guidance | |
if do_classifier_free_guidance: | |
noise_pred_uncond, noise_pred_text = noise_pred.chunk(2) | |
noise_pred = noise_pred_uncond + guidance_scale * ( | |
noise_pred_text - noise_pred_uncond | |
) | |
# compute the previous noisy sample x_t -> x_t-1 | |
latents = self.scheduler.step( | |
noise_pred, t, latents, **extra_step_kwargs, return_dict=False | |
)[0] | |
# call the callback, if provided | |
if i == len(timesteps) - 1 or ( | |
(i + 1) > num_warmup_steps and (i + 1) % self.scheduler.order == 0 | |
): | |
progress_bar.update() | |
latents = unscale_latents(latents) | |
if not output_type == "latent": | |
image = self.vae.decode( | |
latents / self.vae.config.scaling_factor, return_dict=False | |
)[0] | |
image, has_nsfw_concept = self.run_safety_checker( | |
image, device, prompt_embeds.dtype | |
) | |
else: | |
image = latents | |
if has_nsfw_concept is None: | |
do_denormalize = [True] * image.shape[0] | |
else: | |
do_denormalize = [not has_nsfw for has_nsfw in has_nsfw_concept] | |
image = self.image_processor.postprocess( | |
image, output_type=output_type, do_denormalize=do_denormalize | |
) | |
# Offload last model to CPU | |
if hasattr(self, "final_offload_hook") and self.final_offload_hook is not None: | |
self.final_offload_hook.offload() | |
return StableDiffusionPipelineOutput( | |
images=image, nsfw_content_detected=has_nsfw_concept | |
) | |
def forward_pipeline( | |
self, | |
latents: torch.Tensor, | |
cond_latent: torch.Tensor, | |
cross_attention_kwargs: dict, | |
guidance_scale: float, | |
num_images_per_prompt: int, | |
prompt_embeds, | |
num_inference_steps: int, | |
output_type: str, | |
width: int, | |
height: int, | |
edit_strength: float = 1.0, | |
): | |
height = height or self.unet.config.sample_size * self.vae_scale_factor | |
width = width or self.unet.config.sample_size * self.vae_scale_factor | |
batch_size = 1 | |
generator = torch.Generator(device=cond_latent.device) | |
device = self._execution_device | |
# here `guidance_scale` is defined analog to the guidance weight `w` of equation (2) | |
# of the Imagen paper: https://arxiv.org/pdf/2205.11487.pdf . `guidance_scale = 1` | |
# corresponds to doing no classifier free guidance. | |
do_classifier_free_guidance = guidance_scale > 1.0 | |
# 3. Encode input prompt | |
text_encoder_lora_scale = ( | |
cross_attention_kwargs.get("scale", None) | |
if cross_attention_kwargs is not None | |
else None | |
) | |
prompt_embeds = self._encode_prompt( | |
None, | |
device, | |
num_images_per_prompt, | |
do_classifier_free_guidance, | |
None, | |
prompt_embeds=prompt_embeds, | |
negative_prompt_embeds=None, | |
lora_scale=text_encoder_lora_scale, | |
) | |
# 4. Prepare timesteps | |
self.scheduler.set_timesteps(num_inference_steps, device=device) | |
# self.scheduler.timesteps = self.scheduler.timesteps | |
timesteps = self.scheduler.timesteps | |
timesteps = reversed(reversed(timesteps)[: int(edit_strength * len(timesteps))]) | |
# 5. Prepare latent variables | |
num_channels_latents = self.unet.config.in_channels // 2 | |
latents = self.prepare_latents( | |
batch_size * num_images_per_prompt, | |
num_channels_latents, | |
height, | |
width, | |
prompt_embeds.dtype, | |
device, | |
generator, | |
latents, | |
timesteps[0:1], | |
) | |
extra_step_kwargs = self.prepare_extra_step_kwargs(generator, 0.0) | |
if do_classifier_free_guidance: | |
cond_latent = cond_latent.expand(batch_size * 2, -1, -1, -1) | |
# 7. Denoising loop | |
num_warmup_steps = 0 | |
with self.progress_bar(total=len(timesteps)) as progress_bar: | |
for i, t in enumerate(timesteps): | |
# expand the latents if we are doing classifier free guidance | |
latent_model_input = ( | |
torch.cat([latents] * 2) if do_classifier_free_guidance else latents | |
) | |
latent_model_input = self.scheduler.scale_model_input( | |
latent_model_input, t | |
) | |
latent_model_input = torch.cat([latent_model_input, cond_latent], dim=1) | |
# latent_model_input = latent_model_input.half() | |
# predict the noise residual | |
noise_pred = self.unet( | |
latent_model_input, | |
t, | |
encoder_hidden_states=prompt_embeds, | |
cross_attention_kwargs=cross_attention_kwargs, | |
return_dict=False, | |
)[0] | |
# perform guidance | |
if do_classifier_free_guidance: | |
noise_pred_uncond, noise_pred_text = noise_pred.chunk(2) | |
noise_pred = noise_pred_uncond + guidance_scale * ( | |
noise_pred_text - noise_pred_uncond | |
) | |
# compute the previous noisy sample x_t -> x_t-1 | |
latents = self.scheduler.step( | |
noise_pred, t, latents, **extra_step_kwargs, return_dict=False | |
)[0] | |
# call the callback, if provided | |
if i == len(timesteps) - 1 or ( | |
(i + 1) > num_warmup_steps and (i + 1) % self.scheduler.order == 0 | |
): | |
progress_bar.update() | |
latents = unscale_latents(latents) | |
if not output_type == "latent": | |
image = self.vae.decode( | |
latents / self.vae.config.scaling_factor, return_dict=False | |
)[0] | |
image, has_nsfw_concept = self.run_safety_checker( | |
image, device, prompt_embeds.dtype | |
) | |
else: | |
image = latents | |
has_nsfw_concept = None | |
if has_nsfw_concept is None: | |
do_denormalize = [True] * image.shape[0] | |
else: | |
do_denormalize = [not has_nsfw for has_nsfw in has_nsfw_concept] | |
image = self.image_processor.postprocess( | |
image, output_type=output_type, do_denormalize=do_denormalize | |
) | |
# Offload last model to CPU | |
if hasattr(self, "final_offload_hook") and self.final_offload_hook is not None: | |
self.final_offload_hook.offload() | |
return StableDiffusionPipelineOutput( | |
images=image, nsfw_content_detected=has_nsfw_concept | |
) | |
def __call__( | |
self, | |
image: Image.Image = None, | |
source_image: Image.Image = None, | |
prompt="", | |
*args, | |
num_images_per_prompt: Optional[int] = 1, | |
guidance_scale=4.0, | |
depth_image: Image.Image = None, | |
output_type: Optional[str] = "pil", | |
width=640, | |
height=960, | |
num_inference_steps=28, | |
return_dict=True, | |
**kwargs, | |
): | |
self.prepare() | |
if image is None: | |
raise ValueError( | |
"Inputting embeddings not supported for this pipeline. Please pass an image." | |
) | |
assert not isinstance(image, torch.Tensor) | |
image = to_rgb_image(image) | |
image_1 = self.feature_extractor_vae( | |
images=image, return_tensors="pt" | |
).pixel_values | |
image_2 = self.feature_extractor_clip( | |
images=image, return_tensors="pt" | |
).pixel_values | |
# image_source = to_rgb_image(source_image) | |
# image_source_latents = self.feature_extractor_vae(images=image_source, return_tensors="pt") | |
if depth_image is not None and hasattr(self.unet, "controlnet"): | |
depth_image = to_rgb_image(depth_image) | |
depth_image = self.depth_transforms_multi(depth_image).to( | |
device=self.unet.controlnet.device, dtype=self.unet.controlnet.dtype | |
) | |
image = image_1.to(device=self.vae.device, dtype=self.vae.dtype) | |
image_2 = image_2.to(device=self.vae.device, dtype=self.vae.dtype) | |
cond_lat = self.encode_condition_image(image) | |
if guidance_scale > 1: | |
negative_lat = self.encode_condition_image(torch.zeros_like(image)) | |
cond_lat = torch.cat([negative_lat, cond_lat]) | |
encoded = self.vision_encoder(image_2, output_hidden_states=False) | |
global_embeds = encoded.image_embeds | |
global_embeds = global_embeds.unsqueeze(-2) | |
if hasattr(self, "encode_prompt"): | |
encoder_hidden_states = self.encode_prompt( | |
prompt, self.device, num_images_per_prompt, False | |
)[0] | |
else: | |
encoder_hidden_states = self._encode_prompt( | |
prompt, self.device, num_images_per_prompt, False | |
) | |
ramp = global_embeds.new_tensor(self.config.ramping_coefficients).unsqueeze(-1) | |
encoder_hidden_states = encoder_hidden_states + global_embeds * ramp | |
cak = dict(cond_lat=cond_lat) | |
if hasattr(self.unet, "controlnet"): | |
cak["control_depth"] = depth_image | |
latents: torch.Tensor = ( | |
super() | |
.__call__( | |
None, | |
*args, | |
cross_attention_kwargs=cak, | |
guidance_scale=guidance_scale, | |
num_images_per_prompt=num_images_per_prompt, | |
prompt_embeds=encoder_hidden_states, | |
num_inference_steps=num_inference_steps, | |
output_type="latent", | |
width=width, | |
height=height, | |
latents=None, | |
**kwargs, | |
) | |
.images | |
) | |
latents = unscale_latents(latents) | |
if not output_type == "latent": | |
image = unscale_image( | |
self.vae.decode( | |
latents / self.vae.config.scaling_factor, return_dict=False | |
)[0] | |
) | |
else: | |
image = latents | |
image = self.image_processor.postprocess(image, output_type=output_type) | |
if not return_dict: | |
return (image,) | |
return ImagePipelineOutput(images=image) | |