Spaces:
Running
on
Zero
Running
on
Zero
File size: 9,845 Bytes
efa71f7 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 |
from typing import Iterable, List, Optional, Union
import numpy as np
import torch
import torch.nn as nn
from PIL import Image
from shap_e.models.download import default_cache_dir
ImageType = Union[np.ndarray, torch.Tensor, Image.Image]
class ImageCLIP(nn.Module):
"""
A wrapper around a pre-trained CLIP model that automatically handles
batches of texts, images, and embeddings.
"""
def __init__(
self,
device: torch.device,
dtype: Optional[torch.dtype] = torch.float32,
ensure_used_params: bool = True,
clip_name: str = "ViT-L/14",
cache_dir: Optional[str] = None,
):
super().__init__()
assert clip_name in ["ViT-L/14", "ViT-B/32"]
self.device = device
self.ensure_used_params = ensure_used_params
# Lazy import because of torchvision.
import clip
self.clip_model, self.preprocess = clip.load(
clip_name, device=device, download_root=cache_dir or default_cache_dir()
)
self.clip_name = clip_name
if dtype is not None:
self.clip_model.to(dtype)
self._tokenize = clip.tokenize
@property
def feature_dim(self) -> int:
if self.clip_name == "ViT-L/14":
return 768
else:
return 512
@property
def grid_size(self) -> int:
if self.clip_name == "ViT-L/14":
return 16
else:
return 7
@property
def grid_feature_dim(self) -> int:
if self.clip_name == "ViT-L/14":
return 1024
else:
return 768
def forward(
self,
batch_size: int,
images: Optional[Iterable[Optional[ImageType]]] = None,
texts: Optional[Iterable[Optional[str]]] = None,
embeddings: Optional[Iterable[Optional[torch.Tensor]]] = None,
) -> torch.Tensor:
"""
Generate a batch of embeddings from a mixture of images, texts,
precomputed embeddings, and possibly empty values.
For each batch element, at most one of images, texts, and embeddings
should have a non-None value. Embeddings from multiple modalities
cannot be mixed for a single batch element. If no modality is provided,
a zero embedding will be used for the batch element.
"""
image_seq = [None] * batch_size if images is None else list(images)
text_seq = [None] * batch_size if texts is None else list(texts)
embedding_seq = [None] * batch_size if embeddings is None else list(embeddings)
assert len(image_seq) == batch_size, "number of images should match batch size"
assert len(text_seq) == batch_size, "number of texts should match batch size"
assert len(embedding_seq) == batch_size, "number of embeddings should match batch size"
if self.ensure_used_params:
return self._static_multimodal_embed(
images=image_seq, texts=text_seq, embeddings=embedding_seq
)
result = torch.zeros((batch_size, self.feature_dim), device=self.device)
index_images = []
index_texts = []
for i, (image, text, emb) in enumerate(zip(image_seq, text_seq, embedding_seq)):
assert (
sum([int(image is not None), int(text is not None), int(emb is not None)]) < 2
), "only one modality may be non-None per batch element"
if image is not None:
index_images.append((i, image))
elif text is not None:
index_texts.append((i, text))
elif emb is not None:
result[i] = emb.to(result)
if len(index_images):
embs = self.embed_images((img for _, img in index_images))
for (i, _), emb in zip(index_images, embs):
result[i] = emb.to(result)
if len(index_texts):
embs = self.embed_text((text for _, text in index_texts))
for (i, _), emb in zip(index_texts, embs):
result[i] = emb.to(result)
return result
def _static_multimodal_embed(
self,
images: List[Optional[ImageType]] = None,
texts: List[Optional[str]] = None,
embeddings: List[Optional[torch.Tensor]] = None,
) -> torch.Tensor:
"""
Like forward(), but always runs all encoders to ensure that
the forward graph looks the same on every rank.
"""
image_emb = self.embed_images(images)
text_emb = self.embed_text(t if t else "" for t in texts)
joined_embs = torch.stack(
[
emb.to(device=self.device, dtype=torch.float32)
if emb is not None
else torch.zeros(self.feature_dim, device=self.device)
for emb in embeddings
],
dim=0,
)
image_flag = torch.tensor([x is not None for x in images], device=self.device)[
:, None
].expand_as(image_emb)
text_flag = torch.tensor([x is not None for x in texts], device=self.device)[
:, None
].expand_as(image_emb)
emb_flag = torch.tensor([x is not None for x in embeddings], device=self.device)[
:, None
].expand_as(image_emb)
return (
image_flag.float() * image_emb
+ text_flag.float() * text_emb
+ emb_flag.float() * joined_embs
+ self.clip_model.logit_scale * 0 # avoid unused parameters
)
def embed_images(self, xs: Iterable[Optional[ImageType]]) -> torch.Tensor:
"""
:param xs: N images, stored as numpy arrays, tensors, or PIL images.
:return: an [N x D] tensor of features.
"""
clip_inputs = self.images_to_tensor(xs)
results = self.clip_model.encode_image(clip_inputs).float()
return results / torch.linalg.norm(results, dim=-1, keepdim=True)
def embed_text(self, prompts: Iterable[str]) -> torch.Tensor:
"""
Embed text prompts as an [N x D] tensor.
"""
enc = self.clip_model.encode_text(
self._tokenize(list(prompts), truncate=True).to(self.device)
).float()
return enc / torch.linalg.norm(enc, dim=-1, keepdim=True)
def embed_images_grid(self, xs: Iterable[Optional[ImageType]]) -> torch.Tensor:
"""
Embed images into latent grids.
:param xs: an iterable of images to embed.
:return: a tensor of shape [N x C x L], where L = self.grid_size**2.
"""
if self.ensure_used_params:
extra_value = 0.0
for p in self.parameters():
extra_value = extra_value + p.mean() * 0.0
else:
extra_value = 0.0
x = self.images_to_tensor(xs).to(self.clip_model.dtype)
# https://github.com/openai/CLIP/blob/4d120f3ec35b30bd0f992f5d8af2d793aad98d2a/clip/model.py#L225
vt = self.clip_model.visual
x = vt.conv1(x) # shape = [*, width, grid, grid]
x = x.reshape(x.shape[0], x.shape[1], -1) # shape = [*, width, grid ** 2]
x = x.permute(0, 2, 1) # shape = [*, grid ** 2, width]
x = torch.cat(
[
vt.class_embedding.to(x.dtype)
+ torch.zeros(x.shape[0], 1, x.shape[-1], dtype=x.dtype, device=x.device),
x,
],
dim=1,
) # shape = [*, grid ** 2 + 1, width]
x = x + vt.positional_embedding.to(x.dtype)
x = vt.ln_pre(x)
x = x.permute(1, 0, 2) # NLD -> LND
x = vt.transformer(x)
x = x.permute(1, 2, 0) # LND -> NDL
return x[..., 1:].contiguous().float() + extra_value
def images_to_tensor(self, xs: Iterable[Optional[ImageType]]) -> torch.Tensor:
return torch.stack([self.preprocess(_image_to_pil(x)) for x in xs], dim=0).to(self.device)
class FrozenImageCLIP:
def __init__(self, device: torch.device, **kwargs):
self.model = ImageCLIP(device, dtype=None, ensure_used_params=False, **kwargs)
for parameter in self.model.parameters():
parameter.requires_grad_(False)
@property
def feature_dim(self) -> int:
return self.model.feature_dim
@property
def grid_size(self) -> int:
return self.model.grid_size
@property
def grid_feature_dim(self) -> int:
return self.model.grid_feature_dim
def __call__(
self,
batch_size: int,
images: Optional[Iterable[Optional[ImageType]]] = None,
texts: Optional[Iterable[Optional[str]]] = None,
embeddings: Optional[Iterable[Optional[torch.Tensor]]] = None,
) -> torch.Tensor:
# We don't do a no_grad() here so that gradients could still
# flow to the input embeddings argument.
# This behavior is currently not used, but it could be.
return self.model(batch_size=batch_size, images=images, texts=texts, embeddings=embeddings)
def embed_images(self, xs: Iterable[Optional[ImageType]]) -> torch.Tensor:
with torch.no_grad():
return self.model.embed_images(xs)
def embed_text(self, prompts: Iterable[str]) -> torch.Tensor:
with torch.no_grad():
return self.model.embed_text(prompts)
def embed_images_grid(self, xs: Iterable[Optional[ImageType]]) -> torch.Tensor:
with torch.no_grad():
return self.model.embed_images_grid(xs)
def _image_to_pil(obj: Optional[ImageType]) -> Image.Image:
if obj is None:
return Image.fromarray(np.zeros([64, 64, 3], dtype=np.uint8))
if isinstance(obj, np.ndarray):
return Image.fromarray(obj.astype(np.uint8))
elif isinstance(obj, torch.Tensor):
return Image.fromarray(obj.detach().cpu().numpy().astype(np.uint8))
else:
return obj
|