File size: 1,174 Bytes
fddd482
b29974e
a4b631b
 
53f52db
fddd482
b29974e
 
a4b631b
b29974e
ab30e5f
b29974e
a60fda2
b29974e
ab30e5f
 
 
9e57f80
 
ab30e5f
 
b29974e
ba9ca24
b29974e
 
ab30e5f
 
 
 
 
 
c185875
 
ab30e5f
b29974e
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
import spaces
from transformers import AutoModelForCausalLM, AutoTokenizer
import gradio as gr

checkpoint = "WillHeld/olmo-raccoon"
device = "cuda"
tokenizer = AutoTokenizer.from_pretrained(checkpoint)
model = AutoModelForCausalLM.from_pretrained(checkpoint).to(device)

@spaces.GPU(duration=120)
def predict(message, history, temperature, top_p):
    history.append({"role": "user", "content": message})
    input_text = tokenizer.apply_chat_template(history, tokenize=False, add_generation_prompt=True)
    inputs = tokenizer.encode(input_text, return_tensors="pt").to(device)  
    outputs = model.generate(
        inputs, 
        max_new_tokens=1024, 
        temperature=float(temperature), 
        top_p=float(top_p), 
        do_sample=True
    )
    decoded = tokenizer.decode(outputs[0])
    response = decoded.split("<|assistant|>")[-1]
    return response

with gr.Blocks() as demo:
    chatbot = gr.ChatInterface(
        predict,
        additional_inputs=[
            gr.Slider(0.1, 2.0, value=0.7, step=0.1, label="Temperature"),
            gr.Slider(0.1, 1.0, value=0.9, step=0.05, label="Top-P")
        ],
        type="messages"
    )

demo.launch()