import gradio as gr from transformers import pipeline,AutoTokenizer,AutoModelForSeq2SeqLM import re,torch device = "cuda" if torch.cuda.is_available() else "cpu" def load_models(): try: enhancer_medium = pipeline("summarization", model="gokaygokay/Lamini-Prompt-Enchance", device=device) enhancer_long = pipeline("summarization", model="gokaygokay/Lamini-Prompt-Enchance-Long", device=device) model_checkpoint = "gokaygokay/Flux-Prompt-Enhance" tokenizer = AutoTokenizer.from_pretrained(model_checkpoint) model = AutoModelForSeq2SeqLM.from_pretrained(model_checkpoint).eval().to(device=device) enhancer_flux = pipeline('text2text-generation', model=model, tokenizer=tokenizer, repetition_penalty=1.5, device=device) except Exception as e: print(e) enhancer_medium = enhancer_long = enhancer_flux = None return enhancer_medium, enhancer_long, enhancer_flux enhancer_medium, enhancer_long, enhancer_flux = load_models() def enhance_prompt(input_prompt, model_choice): if model_choice == "Medium": result = enhancer_medium("Enhance the description: " + input_prompt) enhanced_text = result[0]['summary_text'] pattern = r'^.*?of\s+(.*?(?:\.|$))' match = re.match(pattern, enhanced_text, re.IGNORECASE | re.DOTALL) if match: remaining_text = enhanced_text[match.end():].strip() modified_sentence = match.group(1).capitalize() enhanced_text = modified_sentence + ' ' + remaining_text elif model_choice == "Flux": result = enhancer_flux("enhance prompt: " + input_prompt, max_length=256) enhanced_text = result[0]['generated_text'] else: # Long result = enhancer_long("Enhance the description: " + input_prompt) enhanced_text = result[0]['summary_text'] return enhanced_text def prompt_enhancer(character: str, series: str, general: str, model_choice: str): characters = character.split(",") if character else [] serieses = series.split(",") if series else [] generals = general.split(",") if general else [] tags = characters + serieses + generals cprompt = ",".join(tags) if tags else "" output = enhance_prompt(cprompt, model_choice) prompt = cprompt + ", " + output return prompt, gr.update(interactive=True), gr.update(interactive=True)