WensongSong's picture
Upload 28 files
20d069f verified
import numpy as np
import cv2
import math
def f(r, T=0.6, beta=0.1):
return np.where(r < T, beta + (1 - beta) / T * r, 1)
# Get the bounding box of the mask
def get_bbox_from_mask(mask):
h,w = mask.shape[0],mask.shape[1]
if mask.sum() < 10:
return 0,h,0,w
rows = np.any(mask,axis=1)
cols = np.any(mask,axis=0)
y1,y2 = np.where(rows)[0][[0,-1]]
x1,x2 = np.where(cols)[0][[0,-1]]
return (y1,y2,x1,x2)
# Expand the bounding box
def expand_bbox(mask, yyxx, ratio, min_crop=0):
y1,y2,x1,x2 = yyxx
H,W = mask.shape[0], mask.shape[1]
yyxx_area = (y2-y1+1) * (x2-x1+1)
r1 = yyxx_area / (H * W)
r2 = f(r1)
ratio = math.sqrt(r2 / r1)
xc, yc = 0.5 * (x1 + x2), 0.5 * (y1 + y2)
h = ratio * (y2-y1+1)
w = ratio * (x2-x1+1)
h = max(h,min_crop)
w = max(w,min_crop)
x1 = int(xc - w * 0.5)
x2 = int(xc + w * 0.5)
y1 = int(yc - h * 0.5)
y2 = int(yc + h * 0.5)
x1 = max(0,x1)
x2 = min(W,x2)
y1 = max(0,y1)
y2 = min(H,y2)
return (y1,y2,x1,x2)
# Pad the image to a square shape
def pad_to_square(image, pad_value = 255, random = False):
H,W = image.shape[0], image.shape[1]
if H == W:
return image
padd = abs(H - W)
if random:
padd_1 = int(np.random.randint(0,padd))
else:
padd_1 = int(padd / 2)
padd_2 = padd - padd_1
if len(image.shape) == 2:
if H > W:
pad_param = ((0, 0), (padd_1, padd_2))
else:
pad_param = ((padd_1, padd_2), (0, 0))
elif len(image.shape) == 3:
if H > W:
pad_param = ((0, 0), (padd_1, padd_2), (0, 0))
else:
pad_param = ((padd_1, padd_2), (0, 0), (0, 0))
image = np.pad(image, pad_param, 'constant', constant_values=pad_value)
return image
# Expand the image and mask
def expand_image_mask(image, mask, ratio=1.4):
h,w = image.shape[0], image.shape[1]
H,W = int(h * ratio), int(w * ratio)
h1 = int((H - h) // 2)
h2 = H - h - h1
w1 = int((W -w) // 2)
w2 = W -w - w1
pad_param_image = ((h1,h2),(w1,w2),(0,0))
pad_param_mask = ((h1,h2),(w1,w2))
image = np.pad(image, pad_param_image, 'constant', constant_values=255)
mask = np.pad(mask, pad_param_mask, 'constant', constant_values=0)
return image, mask
# Convert the bounding box to a square shape
def box2squre(image, box):
H,W = image.shape[0], image.shape[1]
y1,y2,x1,x2 = box
cx = (x1 + x2) // 2
cy = (y1 + y2) // 2
h,w = y2-y1, x2-x1
if h >= w:
x1 = cx - h//2
x2 = cx + h//2
else:
y1 = cy - w//2
y2 = cy + w//2
x1 = max(0,x1)
x2 = min(W,x2)
y1 = max(0,y1)
y2 = min(H,y2)
return (y1,y2,x1,x2)
# Crop the predicted image back to the original image
def crop_back( pred, tar_image, extra_sizes, tar_box_yyxx_crop):
H1, W1, H2, W2 = extra_sizes
y1,y2,x1,x2 = tar_box_yyxx_crop
pred = cv2.resize(pred, (W2, H2))
m = 2 # maigin_pixel
if W1 == H1:
if m != 0:
tar_image[y1+m :y2-m, x1+m:x2-m, :] = pred[m:-m, m:-m]
else:
tar_image[y1 :y2, x1:x2, :] = pred[:, :]
return tar_image
if W1 < W2:
pad1 = int((W2 - W1) / 2)
pad2 = W2 - W1 - pad1
pred = pred[:,pad1: -pad2, :]
else:
pad1 = int((H2 - H1) / 2)
pad2 = H2 - H1 - pad1
pred = pred[pad1: -pad2, :, :]
gen_image = tar_image.copy()
if m != 0:
gen_image[y1+m :y2-m, x1+m:x2-m, :] = pred[m:-m, m:-m]
else:
gen_image[y1 :y2, x1:x2, :] = pred[:, :]
return gen_image