Victarry's picture
Initial commit: PP schedule visualization.
c048b97
raw
history blame
14.9 kB
import dash
import dash_bootstrap_components as dbc
from dash import dcc, html, Input, Output, State, callback_context
import plotly.graph_objects as go
from src.execution_model import ScheduleConfig, Schedule
from src.strategies import (
generate_1f1b_schedule,
generate_zero_bubble_1p_schedule,
generate_1f1b_overlap_schedule,
generate_1f1b_interleave_schedule,
generate_1f1b_interleave_overlap_schedule,
generate_dualpipe_schedule
)
from src.visualizer import convert_schedule_to_visualization_format, create_pipeline_figure
STRATEGIES = {
"1f1b": generate_1f1b_schedule,
"zb1p": generate_zero_bubble_1p_schedule,
"1f1b_overlap": generate_1f1b_overlap_schedule,
"1f1b_interleave": generate_1f1b_interleave_schedule,
"1f1b_interleave_overlap": generate_1f1b_interleave_overlap_schedule,
"dualpipe": generate_dualpipe_schedule,
}
app = dash.Dash(__name__, external_stylesheets=[dbc.themes.BOOTSTRAP], suppress_callback_exceptions=True)
app.title = "Pipeline Parallelism Schedule Visualizer"
# Initial default values
default_values = {
"num_devices": 4,
"num_stages": 8,
"num_batches": 16,
"p2p_latency": 0.0,
"op_time_forward": 1.0,
"op_time_backward_d": 1.0,
"op_time_backward_w": 1.0,
"op_time_backward": 2.0,
"strategy": "1f1b_interleave",
"op_time_overlapped_fwd_bwd": None,
}
# Define input groups using dbc components
basic_params_card = dbc.Card(
dbc.CardBody([
html.H5("Basic Parameters", className="card-title"),
html.Div([
dbc.Label("Number of Devices (GPUs):"),
dbc.Input(id='num_devices', type='number', value=default_values["num_devices"], min=1, step=1),
], className="mb-3"),
html.Div([
dbc.Label("Number of Stages (Model Chunks):"),
dbc.Input(id='num_stages', type='number', value=default_values["num_stages"], min=1, step=1),
], className="mb-3"),
html.Div([
dbc.Label("Number of Microbatches:"),
dbc.Input(id='num_batches', type='number', value=default_values["num_batches"], min=1, step=1),
], className="mb-3"),
html.Div([
dbc.Label("P2P Latency (ms):"),
dbc.Input(id='p2p_latency', type='number', value=default_values["p2p_latency"], min=0, step=0.01),
], className="mb-3"),
])
)
scheduling_params_card = dbc.Card(
dbc.CardBody([
html.H5("Scheduling Parameters", className="card-title"),
html.Div([
dbc.Label("Scheduling Strategies:"),
dbc.Checklist(
id='strategy-checklist',
options=[{'label': k, 'value': k} for k in STRATEGIES.keys()],
value=list(STRATEGIES.keys()),
inline=False,
),
], className="mb-3"),
])
)
timing_params_card = dbc.Card(
dbc.CardBody([
html.H5("Operation Timing (ms)", className="card-title"),
html.Div([
dbc.Label("Forward:"),
dbc.Input(id='op_time_forward', type='number', value=default_values["op_time_forward"], min=0.01, step=0.01),
], className="mb-3"),
html.Div([
dbc.Label("Backward (Combined):"),
dbc.Input(id='op_time_backward', type='number', value=default_values["op_time_backward"], min=0.01, step=0.01),
dbc.FormText("Used when strategy does NOT require split backward."),
], className="mb-3"),
html.Div([
dbc.Label("Backward D (Data Grad):"),
dbc.Input(id='op_time_backward_d', type='number', value=default_values["op_time_backward_d"], min=0.01, step=0.01),
dbc.FormText("Used when strategy requires split backward (e.g., ZB-1P, DualPipe)."),
], className="mb-3"),
html.Div([
dbc.Label("Backward W (Weight Grad):"),
dbc.Input(id='op_time_backward_w', type='number', value=default_values["op_time_backward_w"], min=0.01, step=0.01),
dbc.FormText("Used when strategy requires split backward (e.g., ZB-1P, DualPipe)."),
], className="mb-3"),
html.Div([
dbc.Label("Overlapped Forward+Backward:"),
dbc.Input(id='op_time_overlapped_fwd_bwd', type='number', placeholder="Optional: Defaults to Fwd + Bwd times", min=0.01, step=0.01, value=default_values["op_time_overlapped_fwd_bwd"]),
dbc.FormText("Specify a custom duration if Forward and Backward ops overlap completely."),
], className="mb-3"),
])
)
# Updated app layout using dbc components and structure
app.layout = dbc.Container([
html.H1("Pipeline Parallelism Schedule Visualizer", className="my-4 text-center"),
dbc.Row([
dbc.Col(basic_params_card, md=4),
dbc.Col(scheduling_params_card, md=4),
dbc.Col(timing_params_card, md=4),
]),
dbc.Row([
dbc.Col([
dbc.Button('Generate Schedule', id='generate-button', n_clicks=0, color="primary", className="mt-4"),
], className="text-center")
]),
dbc.Row([
dbc.Col([
dcc.Loading(
id="loading-graph-area",
type="circle",
children=html.Div(id='graph-output-container', className="mt-4")
)
])
])
], fluid=True)
@app.callback(
Output('graph-output-container', 'children'),
Input('generate-button', 'n_clicks'),
State('num_devices', 'value'),
State('num_stages', 'value'),
State('num_batches', 'value'),
State('p2p_latency', 'value'),
State('op_time_forward', 'value'),
State('op_time_backward', 'value'),
State('op_time_backward_d', 'value'),
State('op_time_backward_w', 'value'),
State('op_time_overlapped_fwd_bwd', 'value'),
State('strategy-checklist', 'value'),
prevent_initial_call=True
)
def update_graph(n_clicks, num_devices, num_stages, num_batches, p2p_latency,
op_time_forward, op_time_backward, op_time_backward_d, op_time_backward_w,
op_time_overlapped_fwd_bwd,
selected_strategies):
# Define the desired display order for strategies
strategy_display_order = ["1f1b", "1f1b_interleave", "1f1b_overlap", "1f1b_interleave_overlap", "dualpipe", "zb1p"]
output_components = []
valid_results = [] # Store (strategy_name, schedule, vis_data) for valid schedules
error_messages = [] # Store (strategy_name, error_message) for errors
automatic_adjustments = [] # Store messages about automatic parameter adjustments
if not selected_strategies:
return [dbc.Alert("Please select at least one scheduling strategy.", color="warning")]
if not all([num_devices, num_stages, num_batches, op_time_forward]):
return [dbc.Alert("Missing required basic input values (Devices, Stages, Batches, Forward Time).", color="danger")]
for strategy in selected_strategies:
error_message = ""
placement_strategy = ""
# Use local copies of params that might be adjusted for this strategy
current_num_stages = num_stages
current_num_devices = num_devices
# Apply automatic adjustments for dualpipe
if strategy == "dualpipe" and num_stages != num_devices:
current_num_stages = num_devices # Force num_stages = num_devices for dualpipe
automatic_adjustments.append(
f"Strategy '{strategy}': Number of Stages automatically adjusted to {num_devices} to match Number of Devices."
)
# Apply automatic adjustments for strategies that require num_stages == num_devices
if strategy in ["1f1b", "1f1b_overlap", "zb1p"] and num_stages != num_devices:
current_num_stages = num_devices
automatic_adjustments.append(
f"Strategy '{strategy}': Number of Stages automatically adjusted to {num_devices} to match Number of Devices."
)
split_backward = strategy in ["zb1p", "dualpipe"]
if split_backward and not all([op_time_backward_d, op_time_backward_w]):
error_message = f"Strategy '{strategy}': Backward D and Backward W times are required."
elif not split_backward and not op_time_backward:
error_message = f"Strategy '{strategy}': Combined Backward time is required."
if not error_message:
if strategy in ["1f1b", "1f1b_overlap", "zb1p"]:
placement_strategy = "standard"
# No need to check num_stages == num_devices as we've enforced it above
elif strategy in ["1f1b_interleave", "1f1b_interleave_overlap"]:
placement_strategy = "interleave"
if current_num_stages % current_num_devices != 0:
error_message = f"Strategy '{strategy}': Requires Number of Stages to be divisible by Number of Devices."
elif strategy == "dualpipe":
placement_strategy = "dualpipe"
if current_num_stages % 2 != 0:
error_message = f"Strategy '{strategy}' (DualPipe): Requires an even number of stages."
# Create adjusted operation times based on placement strategy
if not error_message:
try:
# Calculate number of stages per device for time adjustment
stages_per_device = current_num_stages // current_num_devices
# Calculate scaling factor - this normalizes operation time by stages per device
# For standard placement (1:1 stage:device mapping), this remains 1.0
# For interleaved, this scales down the time proportionally
time_scale_factor = 1.0 / stages_per_device if stages_per_device > 0 else 1.0
if stages_per_device > 1:
automatic_adjustments.append(
f"Strategy '{strategy}': Operation times scaled by 1/{stages_per_device} to account for {stages_per_device} stages per device."
)
# Apply scaling to operation times
op_times = {
"forward": float(op_time_forward) * time_scale_factor
}
if split_backward:
op_times["backward_D"] = float(op_time_backward_d) * time_scale_factor
op_times["backward_W"] = float(op_time_backward_w) * time_scale_factor
# Keep combined for compatibility
op_times["backward"] = (float(op_time_backward_d) + float(op_time_backward_w)) * time_scale_factor
else:
op_times["backward"] = float(op_time_backward) * time_scale_factor
if op_time_overlapped_fwd_bwd is not None:
try:
overlapped_val = float(op_time_overlapped_fwd_bwd)
if overlapped_val > 0:
# Scale overlapped time too
op_times["overlapped_forward_backward"] = overlapped_val * time_scale_factor
except (ValueError, TypeError):
pass
config = ScheduleConfig(
num_devices=int(current_num_devices),
num_stages=int(current_num_stages), # Use adjusted value
num_batches=int(num_batches),
p2p_latency=float(p2p_latency),
placement_strategy=placement_strategy,
split_backward=split_backward,
op_times=op_times,
)
schedule_func = STRATEGIES.get(strategy)
if not schedule_func:
raise ValueError(f"Invalid strategy function for: {strategy}")
schedule = schedule_func(config)
schedule.execute()
# Store valid results instead of creating figure immediately
vis_data = convert_schedule_to_visualization_format(schedule)
valid_results.append((strategy, schedule, vis_data))
except (AssertionError, ValueError, TypeError) as e:
error_message = f"Error generating schedule for '{strategy}': {e}"
import traceback
traceback.print_exc()
except Exception as e:
error_message = f"An unexpected error occurred for '{strategy}': {e}"
import traceback
traceback.print_exc()
if error_message:
error_messages.append((strategy, error_message))
# Add alerts for any automatic parameter adjustments
for adjustment in automatic_adjustments:
output_components.append(
dbc.Alert(adjustment, color="info", dismissable=True)
)
# If we have valid results, calculate the maximum execution time across all schedules
if valid_results:
# Find global maximum execution time
max_execution_time = max(schedule.get_total_execution_time() for _, schedule, _ in valid_results)
# Sort valid results according to the display order
sorted_valid_results = []
# First add strategies in the predefined order
for strategy_name in strategy_display_order:
for result in valid_results:
if result[0] == strategy_name:
sorted_valid_results.append(result)
# Then add any remaining strategies that might not be in the predefined order
for result in valid_results:
if result[0] not in strategy_display_order:
sorted_valid_results.append(result)
# Create figures with aligned x-axis, using the sorted results
for strategy, _, vis_data in sorted_valid_results:
fig = create_pipeline_figure(vis_data, max_time=max_execution_time, show_progress=False)
# Force the x-axis range to be the same for all figures
# Add a small margin (5%) for better visualization
margin = max_execution_time * 0.05
fig.update_layout(
xaxis=dict(
range=[0, max_execution_time + margin]
)
)
output_components.append(html.Div([
html.H4(f"Schedule: {strategy}", className="text-center mt-3 mb-2"),
dcc.Graph(figure=fig)
]))
# Add error messages to output
for strategy, msg in error_messages:
output_components.append(
dbc.Alert(msg, color="danger", className="mt-3")
)
return output_components
# For Hugging Face Spaces deployment
server = app.server
if __name__ == '__main__':
app.run_server(debug=False, host='0.0.0.0', port=7860)