Spaces:
Running
Running
File size: 25,126 Bytes
c048b97 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 |
from collections import defaultdict, deque
from src.execution_model import OverlappedOperation, Operation, Schedule, ScheduleConfig
def generate_1f1b_schedule(config: ScheduleConfig):
schedule = Schedule(config)
assert config.num_devices == config.num_stages, "num_devices must be equal to num_stages for 1F1B"
for i in range(config.num_devices):
fwd_batch_id = 0
bwd_batch_id = 0
cooldown_batches = warmup_batches = config.num_devices - i - 1
steady_batches = config.num_batches - warmup_batches
for _ in range(warmup_batches):
schedule.device_queues[i].add_operation(
schedule.get_op(fwd_batch_id, i, "forward")
)
fwd_batch_id += 1
for _ in range(steady_batches):
schedule.device_queues[i].add_operation(
schedule.get_op(fwd_batch_id, i, "forward")
)
fwd_batch_id += 1
schedule.device_queues[i].add_operation(
schedule.get_op(bwd_batch_id, i, "backward")
)
bwd_batch_id += 1
for _ in range(cooldown_batches):
schedule.device_queues[i].add_operation(
schedule.get_op(bwd_batch_id, i, "backward")
)
bwd_batch_id += 1
return schedule
def generate_zero_bubble_1p_schedule(config: ScheduleConfig):
# Create a new schedule with split_backward=True to support backward_D and backward_W operations
schedule = Schedule(config)
total_batches = config.num_batches
assert config.num_devices == config.num_stages, "num_devices must be equal to num_stages for ZB-1P"
assert config.split_backward, "ZB-1P requires split_backward=True"
for i in range(config.num_devices):
fwd_batch_id = 0
bwd_d_batch_id = 0
bwd_w_batch_id = 0
cooldown_batches = warmup_batches = config.num_devices - i - 1
steady_batches = total_batches - warmup_batches
for _ in range(warmup_batches):
schedule.device_queues[i].add_operation(
schedule.get_op(fwd_batch_id, i, "forward")
)
fwd_batch_id += 1
for _ in range(steady_batches):
schedule.device_queues[i].add_operation(
schedule.get_op(fwd_batch_id, i, "forward")
)
schedule.device_queues[i].add_operation(
schedule.get_op(bwd_d_batch_id, i, "backward_D")
)
if fwd_batch_id - bwd_w_batch_id >= config.num_devices - 1:
schedule.device_queues[i].add_operation(
schedule.get_op(bwd_w_batch_id, i, "backward_W")
)
bwd_w_batch_id += 1
bwd_d_batch_id += 1
fwd_batch_id += 1
for _ in range(cooldown_batches):
schedule.device_queues[i].add_operation(
schedule.get_op(bwd_d_batch_id, i, "backward_D")
)
schedule.device_queues[i].add_operation(
schedule.get_op(bwd_w_batch_id, i, "backward_W")
)
bwd_w_batch_id += 1
bwd_d_batch_id += 1
while bwd_w_batch_id < total_batches:
schedule.device_queues[i].add_operation(
schedule.get_op(bwd_w_batch_id, i, "backward_W")
)
bwd_w_batch_id += 1
return schedule
def generate_1f1b_overlap_schedule(config: ScheduleConfig):
schedule = Schedule(config)
assert config.num_devices == config.num_stages, "num_devices must be equal to num_stages for 1F1B"
for i in range(config.num_devices):
fwd_batch_id = 0
bwd_batch_id = 0
cooldown_batches = warmup_batches = 2 * (config.num_devices - i - 1) + 1
steady_batches = config.num_batches - warmup_batches
for _ in range(warmup_batches):
schedule.device_queues[i].add_operation(
schedule.get_op(fwd_batch_id, i, "forward")
)
fwd_batch_id += 1
for _ in range(steady_batches):
fwd_op = schedule.get_op(fwd_batch_id, i, "forward")
bwd_op = schedule.get_op(bwd_batch_id, i, "backward")
overlapped_op = OverlappedOperation([fwd_op, bwd_op])
schedule.register_overlapped_operation(overlapped_op)
schedule.device_queues[i].add_operation(overlapped_op)
fwd_batch_id += 1
bwd_batch_id += 1
for _ in range(cooldown_batches):
schedule.device_queues[i].add_operation(
schedule.get_op(bwd_batch_id, i, "backward")
)
bwd_batch_id += 1
return schedule
def _get_pp_rank_microbatches(
num_microbatches,
num_devices,
device_id,
num_stages_per_device,
microbatch_group_size_per_vp_stage,
):
"""Get the number of total, warmup, and remaining microbatches in PP scheduling."""
total_num_microbatches = num_microbatches * num_stages_per_device
if num_devices > 1:
# Run (num_model_chunks-1)*microbatch_group_size_per_vp_stage on
# all workers, followed by more microbatches after depending on
# stage ID (more forward passes for earlier stages, later stages can
# immediately start with 1F1B).
num_warmup_microbatches = (num_devices - device_id - 1) * 2
num_warmup_microbatches += (num_stages_per_device - 1) * microbatch_group_size_per_vp_stage
else:
# forward_backward_no_pipelining
num_warmup_microbatches = 1
if num_warmup_microbatches >= total_num_microbatches:
num_warmup_microbatches = total_num_microbatches
return num_warmup_microbatches
def _get_schedule_table(num_microbatches, num_model_chunks, microbatch_group_size_per_vp_stage):
"""Get the schedule table for PP scheduling.
Create a tunable schedule lookup table.
The schedule lookup table uses the virtual_microbatch_id to find the corresponding microbatch_id and model_chunk_id.
For example, the tunable schedule table for PP2 N3M5 with VP2 is constructed as below:
virtual_microbatch_id | 0 1 2 3 4 5 6 7 8 9
microbatch_id | 0 1 2 0 1 2 3 4 3 4
model_chunk_id | 0 0 0 1 1 1 0 0 1 1
"""
schedule_table = []
for min_microbatch_id_in_group in range(
0, num_microbatches, microbatch_group_size_per_vp_stage
):
if min_microbatch_id_in_group + microbatch_group_size_per_vp_stage >= num_microbatches:
# Construct schedule for the last microbatch group
schedule_table.extend(
[
(microbatch_id, model_chunk_id)
for model_chunk_id in range(num_model_chunks)
for microbatch_id in range(min_microbatch_id_in_group, num_microbatches)
]
)
else:
# Construct schedule for other microbatch groups
schedule_table.extend(
[
(microbatch_id, model_chunk_id)
for model_chunk_id in range(num_model_chunks)
for microbatch_id in range(
min_microbatch_id_in_group,
min_microbatch_id_in_group + microbatch_group_size_per_vp_stage,
)
]
)
return schedule_table
def _convert_schedule_table_to_order(num_warmup_microbatches, num_model_chunks, schedule_table):
"""Convert a tunable schedule lookup table to the te.make_graphed_callables() accepted
order format. For example, the tunable schedule table for PP2 N3M5 with VP2 is as below:
virtual_microbatch_id | 0 1 2 3 4 5 6 7 8 9
microbatch_id | 0 1 2 0 1 2 3 4 3 4
model_chunk_id | 0 0 0 1 1 1 0 0 1 1
Then the forward backward separated order is:
forward | 1 1 1 2 2 2 1 1 2 2
backward | -2 -2 -2 -1 -1 -1 -2 -2 -1 -1
If num_warmup_microbatches is 5, the output order is:
1 1 1 2 2 2 -2 1 -2 1 -2 2 -1 2 -1 -1 -2 -2 -1 -1
"""
_, model_chunk_id_table = zip(*schedule_table)
forward_order = [chunk_id + 1 for chunk_id in model_chunk_id_table]
backward_order = [chunk_id - num_model_chunks for chunk_id in model_chunk_id_table]
order = forward_order[:num_warmup_microbatches]
for i in range(num_warmup_microbatches, len(forward_order)):
order.append(forward_order[i])
order.append(backward_order[i - num_warmup_microbatches])
if num_warmup_microbatches > 0:
order.extend(backward_order[-num_warmup_microbatches:])
return order
# Some codes are copied from Megatron-LM
def generate_1f1b_interleave_schedule(config: ScheduleConfig):
schedule = Schedule(config)
for device_id in range(config.num_devices):
microbatch_group_size_per_vp_stage = config.num_devices
num_warmup_microbatches = _get_pp_rank_microbatches(
config.num_batches,
config.num_devices,
device_id,
config.num_stages_per_device,
microbatch_group_size_per_vp_stage,
)
schedule_table = _get_schedule_table(
config.num_batches,
config.num_stages_per_device,
microbatch_group_size_per_vp_stage,
)
order = _convert_schedule_table_to_order(
num_warmup_microbatches,
num_model_chunks=config.num_stages_per_device,
schedule_table=schedule_table,
)
cur_stage_microbatch_id = {}
for i in range(1, config.num_stages_per_device+1):
cur_stage_microbatch_id[i] = 0
cur_stage_microbatch_id[-i] = 0
for order_item in order:
stage_id = schedule.device_queues[device_id].stages[abs(order_item)-1]
if order_item > 0:
op_type = "forward"
micro_batch_id = cur_stage_microbatch_id[order_item]
cur_stage_microbatch_id[order_item] = cur_stage_microbatch_id[order_item] + 1
elif order_item < 0:
op_type = "backward"
micro_batch_id = cur_stage_microbatch_id[order_item]
cur_stage_microbatch_id[order_item] = cur_stage_microbatch_id[order_item] + 1
else:
raise ValueError(f"Invalid order item: {order_item}")
schedule.device_queues[device_id].add_operation(
schedule.get_op(micro_batch_id, stage_id, op_type)
)
return schedule
def generate_1f1b_interleave_overlap_schedule(config: ScheduleConfig):
schedule = Schedule(config)
for device_id in range(config.num_devices):
microbatch_group_size_per_vp_stage = config.num_devices
num_warmup_microbatches = _get_pp_rank_microbatches(
config.num_batches,
config.num_devices,
device_id,
config.num_stages_per_device,
microbatch_group_size_per_vp_stage,
)
schedule_table = _get_schedule_table(
config.num_batches,
config.num_stages_per_device,
microbatch_group_size_per_vp_stage,
)
# NOTE: Add one more warmup microbatch for overlapped operations!
num_warmup_microbatches += 1
order = _convert_schedule_table_to_order(
num_warmup_microbatches,
num_model_chunks=config.num_stages_per_device,
schedule_table=schedule_table,
)
cur_stage_microbatch_id = {}
for i in range(1, config.num_stages_per_device+1):
cur_stage_microbatch_id[i] = 0
cur_stage_microbatch_id[-i] = 0
i = 0
num_overlapped_batches = len(order) - num_warmup_microbatches * 2
while i < len(order):
if i < num_warmup_microbatches:
order_item = order[i]
assert order_item > 0
op_type = "forward"
micro_batch_id = cur_stage_microbatch_id[order_item]
cur_stage_microbatch_id[order_item] = cur_stage_microbatch_id[order_item] + 1
stage_id = schedule.device_queues[device_id].stages[abs(order_item)-1]
schedule.device_queues[device_id].add_operation(
schedule.get_op(micro_batch_id, stage_id, op_type)
)
i += 1
elif i >= num_warmup_microbatches and i < num_warmup_microbatches + num_overlapped_batches - 1:
order_item_a = order[i]
order_item_b = order[i+1]
op_type_a = "forward" if order_item_a > 0 else "backward"
micro_batch_id_a = cur_stage_microbatch_id[order_item_a]
cur_stage_microbatch_id[order_item_a] = cur_stage_microbatch_id[order_item_a] + 1
op_type_b = "forward" if order_item_b > 0 else "backward"
micro_batch_id_b = cur_stage_microbatch_id[order_item_b]
cur_stage_microbatch_id[order_item_b] = cur_stage_microbatch_id[order_item_b] + 1
stage_id_a = schedule.device_queues[device_id].stages[abs(order_item_a)-1]
stage_id_b = schedule.device_queues[device_id].stages[abs(order_item_b)-1]
op_a = schedule.get_op(micro_batch_id_a, stage_id_a, op_type_a)
op_b = schedule.get_op(micro_batch_id_b, stage_id_b, op_type_b)
overlapped_op = OverlappedOperation([op_a, op_b])
schedule.register_overlapped_operation(overlapped_op)
schedule.device_queues[device_id].add_operation(overlapped_op)
i += 2
else:
assert i >= num_warmup_microbatches + num_overlapped_batches
order_item = order[i]
assert order_item < 0
op_type = "backward"
micro_batch_id = cur_stage_microbatch_id[order_item]
cur_stage_microbatch_id[order_item] = cur_stage_microbatch_id[order_item] + 1
stage_id = schedule.device_queues[device_id].stages[abs(order_item)-1]
schedule.device_queues[device_id].add_operation(
schedule.get_op(micro_batch_id, stage_id, op_type)
)
i += 1
return schedule
def create_overlapped_ops(schedule, batch_id1, batch_id2, stage_id, type1, type2):
"""
Helper function to create overlapped operations correctly.
This handles the underlying operation creation and registration to avoid device_id issues.
"""
# Get the operations from the schedule
op1 = schedule.ops[(batch_id1, stage_id, type1)]
op2 = schedule.ops[(batch_id2, stage_id, type2)]
# Create the overlapped operation
overlapped_op = OverlappedOperation([op1, op2])
# Register in the schedule to ensure proper tracking
schedule.register_overlapped_operation(overlapped_op)
return overlapped_op
def generate_dualpipe_schedule(config: ScheduleConfig):
"""
Implements the DualPipe scheduling strategy.
DualPipe is a bidirectional pipeline parallelism algorithm that achieves full overlap of forward
and backward computation-communication phases and reduces pipeline bubbles.
The DualPipe strategy has the following characteristics:
1. Requires placement_strategy="dualpipe" in ScheduleConfig (set automatically)
2. Each device handles both a forward stage and a reverse stage
3. Overlaps forward and backward operations to reduce bubble size
4. Assumes config.num_batches corresponds to half the total microbatches in original paper (M).
5. Currently only supports split_backward=True.
Args:
config: The scheduling configuration
Returns:
A Schedule object with the DualPipe scheduling
"""
# Ensure placement strategy is set for Schedule initialization
assert config.placement_strategy == "dualpipe", "DualPipe schedule currently only supports placement_strategy='dualpipe'"
# Assertions based on DualPipe requirements
assert config.num_stages % 2 == 0, "DualPipe requires an even number of stages (and devices)"
assert config.num_devices == config.num_stages, "DualPipe requires num_devices == num_stages"
assert config.num_batches % 2 == 0, "DualPipe requires an even number of microbatches (config.num_batches)"
# Assertion based on original implementation: num_chunks >= num_ranks * 2
# Here, M (config.num_batches) corresponds to half_num_chunks
assert config.num_batches >= config.num_devices, "DualPipe requires config.num_batches >= config.num_devices"
assert config.split_backward, "DualPipe schedule currently only supports split_backward=True"
schedule = Schedule(config, init_ops=False)
num_stages = config.num_stages
num_devices = config.num_devices
# config.num_batches is M in the original paper, which corresponds to half_num_chunks
half_num_chunks = config.num_batches // 2
num_half_ranks = num_devices // 2
fwd_batch_ids = defaultdict(int) # (device_id, phase) -> batch_id
bwd_d_batch_ids = defaultdict(int) # (device_id, phase) -> batch_id
waited_weight_grad = [deque() for _ in range(num_devices)] # (device_id, ) -> List[(stage_id, batch_id)]
for device_id in range(num_devices):
is_in_second_half = device_id >= num_half_ranks
if is_in_second_half:
fwd_batch_ids[device_id, 1] = 0
fwd_batch_ids[device_id, 0] = config.num_batches // 2
bwd_d_batch_ids[device_id, 1] = 0
bwd_d_batch_ids[device_id, 0] = config.num_batches // 2
else:
fwd_batch_ids[device_id, 0] = 0
fwd_batch_ids[device_id, 1] = config.num_batches // 2
bwd_d_batch_ids[device_id, 0] = 0
bwd_d_batch_ids[device_id, 1] = config.num_batches // 2
def get_stage_for_phase(device_id, phase, num_stages, is_in_second_half):
stage_fwd_dir = device_id # Stage handled when moving forward (0 to N-1)
stage_rev_dir = num_stages - 1 - device_id # Stage handled when moving backward (N-1 to 0)
if not is_in_second_half:
# First half: phase 0 -> fwd_dir, phase 1 -> rev_dir
return stage_fwd_dir if phase == 0 else stage_rev_dir
else:
# Second half: phase 0 -> rev_dir, phase 1 -> fwd_dir
return stage_rev_dir if phase == 0 else stage_fwd_dir
def add_op_to_queue(device_id, stage_id, op_type, batch_id):
# Retrieve the correct pre-initialized Operation object
op = Operation(batch_id, stage_id, op_type)
schedule.register_operation(op)
# Add to the device queue
schedule.device_queues[device_id].add_operation(op)
def _schedule_forward_chunk(device_id, phase, is_in_second_half):
"""Schedules a forward compute operation."""
stage_id = get_stage_for_phase(device_id, phase, num_stages, is_in_second_half)
batch_id = fwd_batch_ids[device_id, phase]
add_op_to_queue(device_id, stage_id, "forward", batch_id)
fwd_batch_ids[device_id, phase] += 1
def _schedule_backward_chunk(device_id, phase, is_in_second_half):
"""Schedules a backward_D with backward_W compute operation."""
stage_id = get_stage_for_phase(device_id, phase, num_stages, is_in_second_half)
batch_id = bwd_d_batch_ids[device_id, phase]
add_op_to_queue(device_id, stage_id, "backward", batch_id)
bwd_d_batch_ids[device_id, phase] += 1
def _schedule_backward_input_chunk(device_id, phase, is_in_second_half):
"""Schedules a backward_D compute operation."""
stage_id = get_stage_for_phase(device_id, phase, num_stages, is_in_second_half)
batch_id = bwd_d_batch_ids[device_id, phase]
add_op_to_queue(device_id, stage_id, "backward_D", batch_id)
bwd_d_batch_ids[device_id, phase] += 1
waited_weight_grad[device_id].append((stage_id, batch_id))
def _schedule_backward_weight_chunk(device_id):
"""Schedules a backward_W compute operation."""
stage_id, batch_id = waited_weight_grad[device_id].popleft()
add_op_to_queue(device_id, stage_id, "backward_W", batch_id)
def _schedule_forward_backward_chunk(device_id, fwd_phase, bwd_phase, is_in_second_half):
"""Schedules an overlapped forward and backward_D compute operation."""
fwd_stage_id = get_stage_for_phase(device_id, fwd_phase, num_stages, is_in_second_half)
bwd_stage_id = get_stage_for_phase(device_id, bwd_phase, num_stages, is_in_second_half)
fwd_batch_id = fwd_batch_ids[device_id, fwd_phase]
fwd_op = Operation(fwd_batch_id, fwd_stage_id, "forward")
schedule.register_operation(fwd_op)
fwd_batch_ids[device_id, fwd_phase] += 1
bwd_batch_id_d = bwd_d_batch_ids[device_id, bwd_phase]
bwd_op = Operation(bwd_batch_id_d, bwd_stage_id, "backward")
schedule.register_operation(bwd_op)
bwd_d_batch_ids[device_id, bwd_phase] += 1
# Create and register the overlapped operation
overlapped_op = OverlappedOperation([fwd_op, bwd_op])
schedule.register_overlapped_operation(overlapped_op)
# Add the overlapped operation to the queue
schedule.device_queues[device_id].add_operation(overlapped_op)
# Process each device (rank in original code)
for device_id in range(num_devices):
half_rank = min(device_id, num_devices - 1 - device_id)
is_in_second_half = device_id >= num_half_ranks
is_middle_rank = (device_id == num_half_ranks - 1) or (device_id == num_half_ranks)
# Map original steps to operation additions
# Step 1: nF0
step_1_count = (num_half_ranks - half_rank - 1) * 2
for _ in range(step_1_count):
_schedule_forward_chunk(device_id, 0, is_in_second_half) # F0
# Step 2: nF0F1
step_2_count = half_rank + 1
for i in range(step_2_count):
_schedule_forward_chunk(device_id, 0, is_in_second_half) # F0
_schedule_forward_chunk(device_id, 1, is_in_second_half) # F1
# Step 3: nB1W1F1
step_3_count = num_half_ranks - half_rank - 1
for _ in range(step_3_count):
_schedule_backward_input_chunk(device_id, 1, is_in_second_half) # B1_D
_schedule_backward_weight_chunk(device_id,) # W1
_schedule_forward_chunk(device_id, 1, is_in_second_half) # F1
# Step 4 (Main step): nF0B1F1B0
step_4_count = half_num_chunks - num_devices + half_rank + 1
for i in range(step_4_count):
# if i == 0 and is_middle_rank:
# Schedule F0, B1_D, W1 sequentially for middle ranks on first iteration
# _schedule_forward_chunk(device_id, 0, is_in_second_half) # F0
# _schedule_backward_chunk(device_id, 1, is_in_second_half)# B1
# _schedule_backward_weight_chunk(device_id, 1, is_in_second_half) # W1
# else:
# Overlap F0 and B1_D, then schedule W1
_schedule_forward_backward_chunk(device_id, 0, 1, is_in_second_half) # F0+B1
# Overlap F1 and B0_D, then schedule W0
_schedule_forward_backward_chunk(device_id, 1, 0, is_in_second_half) # F1+B0
# Step 5: nB1F1B0
step_5_count = num_half_ranks - half_rank - 1
for _ in range(step_5_count):
_schedule_backward_chunk(device_id, 1, is_in_second_half) # B1_D + B1_W
_schedule_forward_backward_chunk(device_id, 1, 0, is_in_second_half) # F1+B0
# Step 6: nB1B0
step_6_count = half_rank + 1
enable_zb = False
for i in range(step_6_count):
if i == step_6_count // 2 and half_rank % 2 == 1:
enable_zb = True
if enable_zb:
_schedule_backward_input_chunk(device_id, 1, is_in_second_half)
else:
_schedule_backward_chunk(device_id, 1, is_in_second_half)
if i == step_6_count // 2 and half_rank % 2 == 0:
enable_zb = True
if enable_zb:
_schedule_backward_input_chunk(device_id, 0, is_in_second_half)
else:
_schedule_backward_chunk(device_id, 0, is_in_second_half)
# Step 7: nWB0
step_7_count = num_half_ranks - half_rank - 1
for _ in range(step_7_count):
_schedule_backward_weight_chunk(device_id) # W1 (use gradient from B1_D scheduled previously)
_schedule_backward_input_chunk(device_id, 0, is_in_second_half) # B0_D
# Step 8: nW
step_8_count = half_rank + 1
for _ in range(step_8_count):
# W0 uses gradients from B0_D scheduled in steps 4, 5, 6.
# W1 uses gradients from B1_D scheduled in steps 3, 4, 5, 6.
# The last W0 gradients correspond to B0_D from step 6 or 7.
_schedule_backward_weight_chunk(device_id) # W0 (use gradient from B0_D scheduled previously)
return schedule
|