|
import os
|
|
|
|
os.environ['SPCONV_ALGO'] = 'native'
|
|
|
|
|
|
|
|
import numpy as np
|
|
import imageio
|
|
from PIL import Image
|
|
from trellis.pipelines import TrellisImageTo3DPipeline
|
|
from trellis.utils import render_utils
|
|
|
|
|
|
pipeline = TrellisImageTo3DPipeline.from_pretrained("JeffreyXiang/TRELLIS-image-large")
|
|
pipeline.cuda()
|
|
|
|
|
|
images = [
|
|
Image.open("assets/example_multi_image/character_1.png"),
|
|
Image.open("assets/example_multi_image/character_2.png"),
|
|
Image.open("assets/example_multi_image/character_3.png"),
|
|
]
|
|
|
|
|
|
outputs = pipeline.run_multi_image(
|
|
images,
|
|
seed=1,
|
|
|
|
sparse_structure_sampler_params={
|
|
"steps": 12,
|
|
"cfg_strength": 7.5,
|
|
},
|
|
slat_sampler_params={
|
|
"steps": 12,
|
|
"cfg_strength": 3,
|
|
},
|
|
)
|
|
|
|
|
|
|
|
|
|
|
|
video_gs = render_utils.render_video(outputs['gaussian'][0])['color']
|
|
video_mesh = render_utils.render_video(outputs['mesh'][0])['normal']
|
|
video = [np.concatenate([frame_gs, frame_mesh], axis=1) for frame_gs, frame_mesh in zip(video_gs, video_mesh)]
|
|
imageio.mimsave("sample_multi.mp4", video, fps=30)
|
|
|