import os | |
# os.environ['ATTN_BACKEND'] = 'xformers' # Can be 'flash-attn' or 'xformers', default is 'flash-attn' | |
os.environ['SPCONV_ALGO'] = 'native' # Can be 'native' or 'auto', default is 'auto'. | |
# 'auto' is faster but will do benchmarking at the beginning. | |
# Recommended to set to 'native' if run only once. | |
import imageio | |
from PIL import Image | |
from trellis.pipelines import TrellisImageTo3DPipeline | |
from trellis.utils import render_utils, postprocessing_utils | |
# Load a pipeline from a model folder or a Hugging Face model hub. | |
pipeline = TrellisImageTo3DPipeline.from_pretrained("JeffreyXiang/TRELLIS-image-large") | |
pipeline.cuda() | |
# Load an image | |
image = Image.open("assets/example_image/T.png") | |
# Run the pipeline | |
outputs = pipeline.run( | |
image, | |
seed=1, | |
# Optional parameters | |
# sparse_structure_sampler_params={ | |
# "steps": 12, | |
# "cfg_strength": 7.5, | |
# }, | |
# slat_sampler_params={ | |
# "steps": 12, | |
# "cfg_strength": 3, | |
# }, | |
) | |
# outputs is a dictionary containing generated 3D assets in different formats: | |
# - outputs['gaussian']: a list of 3D Gaussians | |
# - outputs['radiance_field']: a list of radiance fields | |
# - outputs['mesh']: a list of meshes | |
# Render the outputs | |
video = render_utils.render_video(outputs['gaussian'][0])['color'] | |
imageio.mimsave("sample_gs.mp4", video, fps=30) | |
video = render_utils.render_video(outputs['radiance_field'][0])['color'] | |
imageio.mimsave("sample_rf.mp4", video, fps=30) | |
video = render_utils.render_video(outputs['mesh'][0])['normal'] | |
imageio.mimsave("sample_mesh.mp4", video, fps=30) | |
# GLB files can be extracted from the outputs | |
glb = postprocessing_utils.to_glb( | |
outputs['gaussian'][0], | |
outputs['mesh'][0], | |
# Optional parameters | |
simplify=0.95, # Ratio of triangles to remove in the simplification process | |
texture_size=1024, # Size of the texture used for the GLB | |
) | |
glb.export("sample.glb") | |
# Save Gaussians as PLY files | |
outputs['gaussian'][0].save_ply("sample.ply") | |