|
import os |
|
import cv2 |
|
import numpy as np |
|
from mpl_toolkits.mplot3d import Axes3D |
|
import matplotlib.pyplot as plt |
|
import matplotlib as mpl |
|
import os |
|
import sys |
|
os.environ["PYOPENGL_PLATFORM"] = "egl" |
|
from pytorch3d.structures import Meshes, Pointclouds |
|
from pytorch3d.renderer import ( |
|
PointLights, |
|
DirectionalLights, |
|
PerspectiveCameras, |
|
Materials, |
|
SoftPhongShader, |
|
RasterizationSettings, |
|
MeshRenderer, |
|
MeshRendererWithFragments, |
|
MeshRasterizer, |
|
TexturesVertex, |
|
PointsRasterizationSettings, |
|
PointsRenderer, |
|
PointsRasterizer, |
|
AlphaCompositor |
|
) |
|
import torch |
|
import torch.nn as nn |
|
|
|
def vis_keypoints_with_skeleton(img, kps, kps_lines, kp_thresh=0.4, alpha=1): |
|
|
|
cmap = plt.get_cmap('rainbow') |
|
colors = [cmap(i) for i in np.linspace(0, 1, len(kps_lines) + 2)] |
|
colors = [(c[2] * 255, c[1] * 255, c[0] * 255) for c in colors] |
|
|
|
|
|
kp_mask = np.copy(img) |
|
|
|
|
|
for l in range(len(kps_lines)): |
|
i1 = kps_lines[l][0] |
|
i2 = kps_lines[l][1] |
|
p1 = kps[0, i1].astype(np.int32), kps[1, i1].astype(np.int32) |
|
p2 = kps[0, i2].astype(np.int32), kps[1, i2].astype(np.int32) |
|
if kps[2, i1] > kp_thresh and kps[2, i2] > kp_thresh: |
|
cv2.line( |
|
kp_mask, p1, p2, |
|
color=colors[l], thickness=2, lineType=cv2.LINE_AA) |
|
if kps[2, i1] > kp_thresh: |
|
cv2.circle( |
|
kp_mask, p1, |
|
radius=3, color=colors[l], thickness=-1, lineType=cv2.LINE_AA) |
|
if kps[2, i2] > kp_thresh: |
|
cv2.circle( |
|
kp_mask, p2, |
|
radius=3, color=colors[l], thickness=-1, lineType=cv2.LINE_AA) |
|
|
|
|
|
return cv2.addWeighted(img, 1.0 - alpha, kp_mask, alpha, 0) |
|
|
|
def vis_keypoints(img, kps, alpha=1): |
|
|
|
cmap = plt.get_cmap('rainbow') |
|
colors = [cmap(i) for i in np.linspace(0, 1, len(kps) + 2)] |
|
colors = [(c[2] * 255, c[1] * 255, c[0] * 255) for c in colors] |
|
|
|
|
|
kp_mask = np.copy(img) |
|
|
|
|
|
for i in range(len(kps)): |
|
p = kps[i][0].astype(np.int32), kps[i][1].astype(np.int32) |
|
cv2.circle(kp_mask, p, radius=3, color=colors[i], thickness=-1, lineType=cv2.LINE_AA) |
|
|
|
|
|
return cv2.addWeighted(img, 1.0 - alpha, kp_mask, alpha, 0) |
|
|
|
|
|
def render_mesh(mesh, face, cam_param, bkg, blend_ratio=1.0, return_bg_mask=False, R=None, T=None, return_fragments=False): |
|
mesh = mesh.cuda()[None,:,:] |
|
face = torch.LongTensor(face.astype(np.int64)).cuda()[None,:,:] |
|
cam_param = {k: v.cuda()[None,:] for k,v in cam_param.items()} |
|
render_shape = (bkg.shape[0], bkg.shape[1]) |
|
|
|
batch_size, vertex_num = mesh.shape[:2] |
|
textures = TexturesVertex(verts_features=torch.ones((batch_size,vertex_num,3)).float().cuda()) |
|
mesh = torch.stack((-mesh[:,:,0], -mesh[:,:,1], mesh[:,:,2]),2) |
|
mesh = Meshes(mesh, face, textures) |
|
|
|
if R is None: |
|
cameras = PerspectiveCameras(focal_length=cam_param['focal'], |
|
principal_point=cam_param['princpt'], |
|
device='cuda', |
|
in_ndc=False, |
|
image_size=torch.LongTensor(render_shape).cuda().view(1,2)) |
|
else: |
|
cameras = PerspectiveCameras(focal_length=cam_param['focal'], |
|
principal_point=cam_param['princpt'], |
|
device='cuda', |
|
in_ndc=False, |
|
image_size=torch.LongTensor(render_shape).cuda().view(1,2), |
|
R=R, |
|
T=T) |
|
|
|
raster_settings = RasterizationSettings(image_size=render_shape, blur_radius=0.0, faces_per_pixel=1, bin_size=0) |
|
rasterizer = MeshRasterizer(cameras=cameras, raster_settings=raster_settings).cuda() |
|
lights = PointLights(device='cuda') |
|
shader = SoftPhongShader(device='cuda', cameras=cameras, lights=lights) |
|
materials = Materials( |
|
device='cuda', |
|
specular_color=[[0.0, 0.0, 0.0]], |
|
shininess=0.0 |
|
) |
|
|
|
|
|
with torch.no_grad(): |
|
renderer = MeshRendererWithFragments(rasterizer=rasterizer, shader=shader) |
|
images, fragments = renderer(mesh, materials=materials) |
|
|
|
|
|
is_bkg = (fragments.zbuf <= 0).float().cpu().numpy()[0] |
|
render = images[0,:,:,:3].cpu().numpy() |
|
fg = render * blend_ratio + bkg/255 * (1 - blend_ratio) |
|
render = fg * (1 - is_bkg) * 255 + bkg * is_bkg |
|
ret = [render] |
|
if return_bg_mask: |
|
ret.append(is_bkg) |
|
if return_fragments: |
|
ret.append(fragments) |
|
return tuple(ret) |
|
|
|
|
|
def rasterize_mesh(mesh, face, cam_param, height, width, return_bg_mask=False, R=None, T=None): |
|
mesh = mesh.cuda()[None,:,:] |
|
face = face.long().cuda()[None,:,:] |
|
cam_param = {k: v.cuda()[None,:] for k,v in cam_param.items()} |
|
render_shape = (height, width) |
|
|
|
batch_size, vertex_num = mesh.shape[:2] |
|
textures = TexturesVertex(verts_features=torch.ones((batch_size,vertex_num,3)).float().cuda()) |
|
mesh = torch.stack((-mesh[:,:,0], -mesh[:,:,1], mesh[:,:,2]),2) |
|
mesh = Meshes(mesh, face, textures) |
|
|
|
if R is None: |
|
cameras = PerspectiveCameras(focal_length=cam_param['focal'], |
|
principal_point=cam_param['princpt'], |
|
device='cuda', |
|
in_ndc=False, |
|
image_size=torch.LongTensor(render_shape).cuda().view(1,2)) |
|
else: |
|
cameras = PerspectiveCameras(focal_length=cam_param['focal'], |
|
principal_point=cam_param['princpt'], |
|
device='cuda', |
|
in_ndc=False, |
|
image_size=torch.LongTensor(render_shape).cuda().view(1,2), |
|
R=R, |
|
T=T) |
|
|
|
raster_settings = RasterizationSettings(image_size=render_shape, blur_radius=0.0, faces_per_pixel=1, bin_size=0) |
|
rasterizer = MeshRasterizer(cameras=cameras, raster_settings=raster_settings).cuda() |
|
|
|
|
|
fragments = rasterizer(mesh) |
|
|
|
ret = [fragments] |
|
|
|
if return_bg_mask: |
|
|
|
is_bkg = (fragments.zbuf <= 0).float().cpu().numpy()[0] |
|
ret.append(is_bkg) |
|
|
|
return tuple(ret) |
|
|
|
|
|
def rasterize_points(points, cam_param, height, width, return_bg_mask=False, R=None, T=None, to_cpu=False, points_per_pixel=5, radius=0.01): |
|
points = torch.stack((-points[:, 0], -points[:, 1], points[:, 2]), 1) |
|
device = points.device |
|
if len(points.shape) == 2: |
|
points = [points] |
|
pointclouds = Pointclouds(points=points) |
|
cam_param = {k: v.to(device)[None,:] for k,v in cam_param.items()} |
|
render_shape = (height, width) |
|
|
|
if R is None: |
|
cameras = PerspectiveCameras(focal_length=cam_param['focal'], |
|
principal_point=cam_param['princpt'], |
|
device=device, |
|
in_ndc=False, |
|
image_size=torch.LongTensor(render_shape).to(device).view(1,2)) |
|
else: |
|
cameras = PerspectiveCameras(focal_length=cam_param['focal'], |
|
principal_point=cam_param['princpt'], |
|
device=device, |
|
in_ndc=False, |
|
image_size=torch.LongTensor(render_shape).to(device).view(1,2), |
|
R=R, |
|
T=T) |
|
|
|
raster_settings = PointsRasterizationSettings(image_size=render_shape, radius=radius, points_per_pixel=points_per_pixel, max_points_per_bin=82000) |
|
rasterizer = PointsRasterizer(cameras=cameras, raster_settings=raster_settings).to(device) |
|
|
|
|
|
fragments = rasterizer(pointclouds) |
|
|
|
|
|
ret = [fragments] |
|
if return_bg_mask: |
|
if to_cpu: |
|
is_bkg = (fragments.zbuf <= 0).all(dim=-1, keepdim=True).float().cpu().numpy()[0] |
|
else: |
|
is_bkg = (fragments.zbuf <= 0).all(dim=-1, keepdim=True).float()[0] |
|
ret.append(is_bkg) |
|
|
|
return tuple(ret) |
|
|
|
|
|
def render_points(points, cam_param, bkg, blend_ratio=1.0, return_bg_mask=False, R=None, T=None, return_fragments=False, rgbs=None): |
|
points = torch.stack((-points[:, 0], -points[:, 1], points[:, 2]), 1) |
|
if rgbs is None: |
|
rgbs = torch.ones_like(points) |
|
if len(points.shape) == 2: |
|
points = [points] |
|
rgbs = [rgbs] |
|
pointclouds = Pointclouds(points=points, features=rgbs).cuda() |
|
cam_param = {k: v.cuda()[None,:] for k,v in cam_param.items()} |
|
render_shape = (bkg.shape[0], bkg.shape[1]) |
|
|
|
if R is None: |
|
cameras = PerspectiveCameras(focal_length=cam_param['focal'], |
|
principal_point=cam_param['princpt'], |
|
device='cuda', |
|
in_ndc=False, |
|
image_size=torch.LongTensor(render_shape).cuda().view(1,2)) |
|
else: |
|
cameras = PerspectiveCameras(focal_length=cam_param['focal'], |
|
principal_point=cam_param['princpt'], |
|
device='cuda', |
|
in_ndc=False, |
|
image_size=torch.LongTensor(render_shape).cuda().view(1,2), |
|
R=R, |
|
T=T) |
|
|
|
raster_settings = PointsRasterizationSettings(image_size=render_shape, radius=0.01, points_per_pixel=5) |
|
rasterizer = PointsRasterizer(cameras=cameras, raster_settings=raster_settings).cuda() |
|
|
|
|
|
with torch.no_grad(): |
|
fragments = rasterizer(pointclouds) |
|
renderer = PointsRenderer(rasterizer=rasterizer, compositor=AlphaCompositor(background_color=(0, 0, 0))) |
|
images = renderer(pointclouds) |
|
|
|
|
|
is_bkg = (fragments.zbuf <= 0).all(dim=-1, keepdim=True).float().cpu().numpy()[0] |
|
render = images[0,:,:,:3].cpu().numpy() |
|
fg = render * blend_ratio + bkg/255 * (1 - blend_ratio) |
|
render = fg * (1 - is_bkg) * 255 + bkg * is_bkg |
|
|
|
ret = [render] |
|
if return_bg_mask: |
|
ret.append(is_bkg) |
|
if return_fragments: |
|
ret.append(fragments) |
|
return tuple(ret) |
|
|
|
|
|
class RenderMesh(nn.Module): |
|
def __init__(self, image_size, obj_filename=None, faces=None, device='cpu'): |
|
super(RenderMesh, self).__init__() |
|
self.device = device |
|
self.image_size = image_size |
|
if obj_filename is not None: |
|
verts, faces, aux = load_obj(obj_filename, load_textures=False) |
|
self.faces = faces.verts_idx |
|
elif faces is not None: |
|
import numpy as np |
|
self.faces = torch.tensor(faces.astype(np.int32)) |
|
else: |
|
raise NotImplementedError('Must have faces.') |
|
self.raster_settings = RasterizationSettings(image_size=image_size, blur_radius=0.0, faces_per_pixel=1) |
|
self.lights = PointLights(device=device, location=[[0.0, 0.0, 3.0]]) |
|
|
|
def _build_cameras(self, transform_matrix, focal_length, principal_point=None, intr=None): |
|
batch_size = transform_matrix.shape[0] |
|
screen_size = torch.tensor( |
|
[self.image_size, self.image_size], device=self.device |
|
).float()[None].repeat(batch_size, 1) |
|
if principal_point is None: |
|
principal_point = torch.zeros(batch_size, 2, device=self.device).float() |
|
|
|
|
|
if intr is None: |
|
cameras_kwargs = { |
|
'principal_point': principal_point, 'focal_length': focal_length, |
|
'image_size': screen_size, 'device': self.device, |
|
} |
|
else: |
|
cameras_kwargs = { |
|
'principal_point': principal_point, 'focal_length': torch.tensor([intr[0, 0], intr[1, 1]]).unsqueeze(0), |
|
'image_size': screen_size, 'device': self.device, |
|
} |
|
cameras = PerspectiveCameras(**cameras_kwargs, R=transform_matrix[:, :3, :3], T=transform_matrix[:, :3, 3]) |
|
return cameras |
|
|
|
def forward( |
|
self, vertices, cameras=None, transform_matrix=None, focal_length=None, principal_point=None, only_rasterize=False, intr=None, |
|
): |
|
if cameras is None: |
|
cameras = self._build_cameras(transform_matrix, focal_length, principal_point=principal_point, intr=intr) |
|
faces = self.faces[None].repeat(vertices.shape[0], 1, 1) |
|
|
|
verts_rgb = torch.ones_like(vertices) |
|
textures = TexturesVertex(verts_features=verts_rgb.to(self.device)) |
|
mesh = Meshes( |
|
verts=vertices.to(self.device), |
|
faces=faces.to(self.device), |
|
textures=textures |
|
) |
|
renderer = MeshRendererWithFragments( |
|
rasterizer=MeshRasterizer(cameras=cameras, raster_settings=self.raster_settings), |
|
shader=SoftPhongShader(cameras=cameras, lights=self.lights, device=self.device) |
|
) |
|
render_results, fragments = renderer(mesh) |
|
render_results = render_results.permute(0, 3, 1, 2) |
|
if only_rasterize: |
|
return fragments |
|
images = render_results[:, :3] |
|
alpha_images = render_results[:, 3:] |
|
images[alpha_images.expand(-1, 3, -1, -1)<0.5] = 0.0 |
|
return images*255, alpha_images |
|
|
|
|
|
class RenderPoints(nn.Module): |
|
def __init__(self, image_size, obj_filename=None, device='cpu'): |
|
super(RenderPoints, self).__init__() |
|
self.device = device |
|
self.image_size = image_size |
|
if obj_filename is not None: |
|
verts = load_obj(obj_filename, load_textures=False) |
|
self.raster_settings = PointsRasterizationSettings(image_size=image_size, radius=0.01, points_per_pixel=1) |
|
self.lights = PointLights(device=device, location=[[0.0, 0.0, 3.0]]) |
|
|
|
def _build_cameras(self, transform_matrix, focal_length, principal_point=None): |
|
batch_size = transform_matrix.shape[0] |
|
screen_size = torch.tensor( |
|
[self.image_size, self.image_size], device=self.device |
|
).float()[None].repeat(batch_size, 1) |
|
if principal_point is None: |
|
principal_point = torch.zeros(batch_size, 2, device=self.device).float() |
|
|
|
|
|
cameras_kwargs = { |
|
'principal_point': principal_point, 'focal_length': focal_length, |
|
'image_size': screen_size, 'device': self.device, |
|
} |
|
cameras = PerspectiveCameras(**cameras_kwargs, R=transform_matrix[:, :3, :3], T=transform_matrix[:, :3, 3]) |
|
return cameras |
|
|
|
def forward( |
|
self, vertices, cameras=None, transform_matrix=None, focal_length=None, principal_point=None, only_rasterize=False |
|
): |
|
if cameras is None: |
|
cameras = self._build_cameras(transform_matrix, focal_length, principal_point=principal_point) |
|
|
|
verts_rgb = torch.ones_like(vertices) |
|
pointclouds = Pointclouds(points=vertices, features=verts_rgb).cuda() |
|
|
|
|
|
rasterizer = PointsRasterizer(cameras=cameras, raster_settings=self.raster_settings).cuda() |
|
if only_rasterize: |
|
fragments = rasterizer(pointclouds) |
|
return fragments |
|
renderer = PointsRenderer(rasterizer=rasterizer, compositor=AlphaCompositor(background_color=(0, 0, 0))) |
|
render_results = renderer(pointclouds).permute(0, 3, 1, 2) |
|
images = render_results[:, :3] |
|
alpha_images = render_results[:, 3:] |
|
|
|
return images*255, alpha_images |