|
import torch |
|
import numpy as np |
|
import math |
|
import torch.nn as nn |
|
|
|
from pytorch3d.structures import Meshes |
|
from pytorch3d.io import load_obj |
|
from pytorch3d.renderer.mesh import rasterize_meshes |
|
from pytorch3d.ops import mesh_face_areas_normals |
|
|
|
|
|
|
|
def gen_tritex(vt: np.ndarray, vi: np.ndarray, vti: np.ndarray, texsize: int): |
|
""" |
|
Copied from MVP |
|
Create 3 texture maps containing the vertex indices, texture vertex |
|
indices, and barycentric coordinates |
|
|
|
Parameters |
|
---------- |
|
vt: uv coordinates of texels |
|
vi: triangle list mapping into vertex positions |
|
vti: triangle list mapping into texel coordinates |
|
texsize: Size of the generated maps |
|
""" |
|
|
|
vt = vt[:, :2] |
|
|
|
vt = np.array(vt, dtype=np.float32) |
|
vi = np.array(vi, dtype=np.int32) |
|
vti = np.array(vti, dtype=np.int32) |
|
ntris = vi.shape[0] |
|
|
|
texu, texv = np.meshgrid( |
|
(np.arange(texsize) + 0.5) / texsize, |
|
(np.arange(texsize) + 0.5) / texsize) |
|
texuv = np.stack((texu, texv), axis=-1) |
|
|
|
vt = vt[vti] |
|
|
|
viim = np.zeros((texsize, texsize, 3), dtype=np.int32) |
|
vtiim = np.zeros((texsize, texsize, 3), dtype=np.int32) |
|
baryim = np.zeros((texsize, texsize, 3), dtype=np.float32) |
|
|
|
for i in list(range(ntris))[::-1]: |
|
bbox = ( |
|
max(0, int(min(vt[i, 0, 0], min(vt[i, 1, 0], vt[i, 2, 0])) * texsize) - 1), |
|
min(texsize, int(max(vt[i, 0, 0], max(vt[i, 1, 0], vt[i, 2, 0])) * texsize) + 2), |
|
max(0, int(min(vt[i, 0, 1], min(vt[i, 1, 1], vt[i, 2, 1])) * texsize) - 1), |
|
min(texsize, int(max(vt[i, 0, 1], max(vt[i, 1, 1], vt[i, 2, 1])) * texsize) + 2)) |
|
v0 = vt[None, None, i, 1, :] - vt[None, None, i, 0, :] |
|
v1 = vt[None, None, i, 2, :] - vt[None, None, i, 0, :] |
|
v2 = texuv[bbox[2]:bbox[3], bbox[0]:bbox[1], :] - vt[None, None, i, 0, :] |
|
d00 = np.sum(v0 * v0, axis=-1) |
|
d01 = np.sum(v0 * v1, axis=-1) |
|
d11 = np.sum(v1 * v1, axis=-1) |
|
d20 = np.sum(v2 * v0, axis=-1) |
|
d21 = np.sum(v2 * v1, axis=-1) |
|
denom = d00 * d11 - d01 * d01 |
|
|
|
if denom != 0.: |
|
baryv = (d11 * d20 - d01 * d21) / denom |
|
baryw = (d00 * d21 - d01 * d20) / denom |
|
baryu = 1. - baryv - baryw |
|
|
|
baryim[bbox[2]:bbox[3], bbox[0]:bbox[1], :] = np.where( |
|
((baryu >= 0.) & (baryv >= 0.) & (baryw >= 0.))[:, :, None], |
|
np.stack((baryu, baryv, baryw), axis=-1), |
|
baryim[bbox[2]:bbox[3], bbox[0]:bbox[1], :]) |
|
viim[bbox[2]:bbox[3], bbox[0]:bbox[1], :] = np.where( |
|
((baryu >= 0.) & (baryv >= 0.) & (baryw >= 0.))[:, :, None], |
|
np.stack((vi[i, 0], vi[i, 1], vi[i, 2]), axis=-1), |
|
viim[bbox[2]:bbox[3], bbox[0]:bbox[1], :]) |
|
vtiim[bbox[2]:bbox[3], bbox[0]:bbox[1], :] = np.where( |
|
((baryu >= 0.) & (baryv >= 0.) & (baryw >= 0.))[:, :, None], |
|
np.stack((vti[i, 0], vti[i, 1], vti[i, 2]), axis=-1), |
|
vtiim[bbox[2]:bbox[3], bbox[0]:bbox[1], :]) |
|
|
|
return torch.LongTensor(viim), torch.Tensor(vtiim), torch.Tensor(baryim) |
|
|
|
|
|
|
|
class Pytorch3dRasterizer(nn.Module): |
|
def __init__(self, image_size=224): |
|
""" |
|
use fixed raster_settings for rendering faces |
|
""" |
|
super().__init__() |
|
raster_settings = { |
|
'image_size': image_size, |
|
'blur_radius': 0.0, |
|
'faces_per_pixel': 1, |
|
'bin_size': None, |
|
'max_faces_per_bin': None, |
|
'perspective_correct': False, |
|
'cull_backfaces': True |
|
} |
|
|
|
self.raster_settings = raster_settings |
|
|
|
def forward(self, vertices, faces, h=None, w=None): |
|
fixed_vertices = vertices.clone() |
|
fixed_vertices[...,:2] = -fixed_vertices[...,:2] |
|
raster_settings = self.raster_settings |
|
if h is None and w is None: |
|
image_size = raster_settings['image_size'] |
|
else: |
|
image_size = [h, w] |
|
if h>w: |
|
fixed_vertices[..., 1] = fixed_vertices[..., 1]*h/w |
|
else: |
|
fixed_vertices[..., 0] = fixed_vertices[..., 0]*w/h |
|
|
|
meshes_screen = Meshes(verts=fixed_vertices.float(), faces=faces.long()) |
|
pix_to_face, zbuf, bary_coords, dists = rasterize_meshes( |
|
meshes_screen, |
|
image_size=image_size, |
|
blur_radius=raster_settings['blur_radius'], |
|
faces_per_pixel=raster_settings['faces_per_pixel'], |
|
bin_size=raster_settings['bin_size'], |
|
max_faces_per_bin=raster_settings['max_faces_per_bin'], |
|
perspective_correct=raster_settings['perspective_correct'], |
|
cull_backfaces=raster_settings['cull_backfaces'] |
|
) |
|
|
|
return pix_to_face, bary_coords |
|
|
|
|
|
|
|
|
|
def face_vertices(vertices, faces): |
|
""" |
|
Indexing the coordinates of the three vertices on each face. |
|
|
|
Args: |
|
vertices: [bs, V, 3] |
|
faces: [bs, F, 3] |
|
|
|
Return: |
|
face_to_vertices: [bs, F, 3, 3] |
|
""" |
|
assert (vertices.ndimension() == 3) |
|
assert (faces.ndimension() == 3) |
|
|
|
assert (vertices.shape[2] == 3) |
|
assert (faces.shape[2] == 3) |
|
|
|
bs, nv = vertices.shape[:2] |
|
bs, nf = faces.shape[:2] |
|
device = vertices.device |
|
faces = faces + (torch.arange(bs, dtype=torch.int32).to(device) * nv)[:, None, None] |
|
vertices = vertices.reshape((bs * nv, 3)) |
|
|
|
return vertices[faces.long()] |
|
|
|
def uniform_sampling_barycoords( |
|
num_points: int, |
|
tex_coord: torch.Tensor, |
|
uv_faces: torch.Tensor, |
|
d_size: float=1.0, |
|
strict: bool=False, |
|
use_mask: bool=True, |
|
): |
|
""" |
|
Uniformly sampling barycentric coordinates using the rasterizer. |
|
|
|
Args: |
|
num_points: int sampling points number |
|
tex_coord: [5150, 2] UV coords for each vert |
|
uv_faces: [F,3] UV faces to UV coords index |
|
d_size: const to control sampling points number |
|
use_mask: use mask to mask valid points |
|
Returns: |
|
face_index [num_points] save which face each bary_coords belongs to |
|
bary_coords [num_points, 3] |
|
""" |
|
|
|
uv_size = int(math.sqrt(num_points) * d_size) |
|
uv_rasterizer = Pytorch3dRasterizer(uv_size) |
|
|
|
tex_coord = tex_coord[None, ...] |
|
uv_faces = uv_faces[None, ...] |
|
|
|
tex_coord_ = torch.cat([tex_coord, tex_coord[:,:,0:1]*0.+1.], -1) |
|
tex_coord_ = tex_coord_ * 2 - 1 |
|
tex_coord_[...,1] = - tex_coord_[...,1] |
|
|
|
pix_to_face, bary_coords = uv_rasterizer(tex_coord_.expand(1, -1, -1), uv_faces.expand(1, -1, -1)) |
|
mask = (pix_to_face == -1) |
|
|
|
if use_mask: |
|
face_index = pix_to_face[~mask] |
|
bary_coords = bary_coords[~mask] |
|
else: |
|
return pix_to_face, bary_coords |
|
|
|
cur_n = face_index.shape[0] |
|
|
|
|
|
if strict: |
|
if cur_n < num_points: |
|
pad_size = num_points - cur_n |
|
new_face_index = face_index[torch.randint(0, cur_n, (pad_size,))] |
|
new_bary_coords = torch.rand((pad_size, 3), device=bary_coords.device) |
|
new_bary_coords = new_bary_coords / new_bary_coords.sum(dim=-1, keepdim=True) |
|
face_index = torch.cat([face_index, new_face_index], dim=0) |
|
bary_coords = torch.cat([bary_coords, new_bary_coords], dim=0) |
|
elif cur_n > num_points: |
|
face_index = face_index[:num_points] |
|
bary_coords = bary_coords[:num_points] |
|
|
|
return face_index, bary_coords |
|
|
|
def random_sampling_barycoords( |
|
num_points: int, |
|
vertices: torch.Tensor, |
|
faces: torch.Tensor |
|
): |
|
""" |
|
Randomly sampling barycentric coordinates using the rasterizer. |
|
|
|
Args: |
|
num_points: int sampling points number |
|
vertices: [V, 3] |
|
faces: [F,3] |
|
Returns: |
|
face_index [num_points] save which face each bary_coords belongs to |
|
bary_coords [num_points, 3] |
|
""" |
|
|
|
areas, _ = mesh_face_areas_normals(vertices.squeeze(0), faces) |
|
|
|
g1 = torch.Generator(device=vertices.device) |
|
g1.manual_seed(0) |
|
|
|
face_index = areas.multinomial( |
|
num_points, replacement=True, generator=g1 |
|
) |
|
|
|
uvw = torch.rand((face_index.shape[0], 3), device=vertices.device) |
|
bary_coords = uvw / uvw.sum(dim=-1, keepdim=True) |
|
|
|
return face_index, bary_coords |
|
|
|
def reweight_verts_by_barycoords( |
|
verts: torch.Tensor, |
|
faces: torch.Tensor, |
|
face_index: torch.Tensor, |
|
bary_coords: torch.Tensor, |
|
): |
|
""" |
|
Reweights the vertices based on the barycentric coordinates for each face. |
|
|
|
Args: |
|
verts: [bs, V, 3]. |
|
faces: [F, 3] |
|
face_index: [N]. |
|
bary_coords: [N, 3]. |
|
|
|
Returns: |
|
Reweighted vertex positions of shape [bs, N, 3]. |
|
""" |
|
|
|
|
|
B = verts.shape[0] |
|
|
|
face_verts = face_vertices(verts, faces.expand(B, -1, -1)) |
|
|
|
N = face_index.shape[0] |
|
face_index_3 = face_index.view(1, N, 1, 1).expand(B, N, 3, 3) |
|
position_vals = face_verts.gather(1, face_index_3) |
|
|
|
position_vals = (bary_coords[..., None] * position_vals).sum(dim = -2) |
|
|
|
return position_vals |
|
|
|
def reweight_uvcoords_by_barycoords( |
|
uvcoords: torch.Tensor, |
|
uvfaces: torch.Tensor, |
|
face_index: torch.Tensor, |
|
bary_coords: torch.Tensor, |
|
): |
|
""" |
|
Reweights the UV coordinates based on the barycentric coordinates for each face. |
|
|
|
Args: |
|
uvcoords: [bs, V', 2]. |
|
uvfaces: [F, 3]. |
|
face_index: [N]. |
|
bary_coords: [N, 3]. |
|
|
|
Returns: |
|
Reweighted UV coordinates, shape [bs, N, 2]. |
|
""" |
|
|
|
|
|
num_v = uvcoords.shape[0] |
|
uvcoords = torch.cat([uvcoords, torch.ones((num_v, 1)).to(uvcoords.device)], dim=1) |
|
|
|
uvcoords = uvcoords[None, ...] |
|
face_verts = face_vertices(uvcoords, uvfaces.expand(1, -1, -1)) |
|
|
|
N = face_index.shape[0] |
|
face_index_3 = face_index.view(1, N, 1, 1).expand(1, N, 3, 3) |
|
position_vals = face_verts.gather(1, face_index_3) |
|
|
|
position_vals = (bary_coords[..., None] * position_vals).sum(dim = -2) |
|
|
|
return position_vals |
|
|
|
|
|
def get_shell_verts_from_base( |
|
template_verts: torch.Tensor, |
|
template_faces: torch.Tensor, |
|
offset_len: float, |
|
num_shells: int, |
|
deflat = False, |
|
): |
|
""" |
|
Generates shell vertices by offsetting the original mesh's vertices along their normals. |
|
|
|
Args: |
|
template_verts: [bs, V, 3]. |
|
template_faces: [F, 3]. |
|
offset_len: Positive number specifying the offset length for generating shells. |
|
num_shells: The number of shells to generate. |
|
deflat: If True, performs a deflation process. Defaults to False. |
|
|
|
Returns: |
|
shell verts: [bs, num_shells, n, 3] |
|
""" |
|
out_offset_len = offset_len |
|
|
|
if deflat: |
|
in_offset_len = offset_len |
|
|
|
batch_size = template_verts.shape[0] |
|
mesh = Meshes( |
|
verts=template_verts, faces=template_faces[None].repeat(batch_size, 1, 1) |
|
) |
|
|
|
vertex_normal = mesh.verts_normals_padded() |
|
|
|
|
|
if deflat: |
|
n_inflated_shells = num_shells//2 + 1 |
|
else: |
|
n_inflated_shells = num_shells |
|
|
|
linscale = torch.linspace( |
|
out_offset_len, |
|
0, |
|
n_inflated_shells, |
|
device=template_verts.device, |
|
dtype=template_verts.dtype, |
|
) |
|
offset = linscale.reshape(1,n_inflated_shells, 1, 1) * vertex_normal[:, None] |
|
|
|
if deflat: |
|
linscale = torch.linspace(0, -in_offset_len, num_shells - n_inflated_shells + 1, device=template_verts.device, dtype=template_verts.dtype)[1:] |
|
offset_in = linscale.reshape(1, -1, 1, 1) * vertex_normal[:, None] |
|
offset = torch.cat([offset, offset_in], dim=1) |
|
|
|
verts = template_verts[:, None] + offset |
|
assert verts.isfinite().all() |
|
return verts |