|
import os |
|
import cv2 |
|
import math |
|
import torch |
|
import numpy as np |
|
import torch.nn.functional as F |
|
from collections import OrderedDict |
|
from scipy.ndimage import morphology |
|
from skimage.io import imsave |
|
|
|
|
|
def dict2obj(d): |
|
if isinstance(d, list): |
|
d = [dict2obj(x) for x in d] |
|
if not isinstance(d, dict): |
|
return d |
|
|
|
class C(object): |
|
pass |
|
|
|
o = C() |
|
for k in d: |
|
o.__dict__[k] = dict2obj(d[k]) |
|
return o |
|
|
|
|
|
def check_mkdir(path): |
|
if not os.path.exists(path): |
|
print('making %s' % path) |
|
os.makedirs(path) |
|
|
|
|
|
def l2_distance(verts1, verts2): |
|
return torch.sqrt(((verts1 - verts2) ** 2).sum(2)).mean(1).mean() |
|
|
|
|
|
def quat2mat(quat): |
|
"""Convert quaternion coefficients to rotation matrix. |
|
Args: |
|
quat: size = [B, 4] 4 <===>(w, x, y, z) |
|
Returns: |
|
Rotation matrix corresponding to the quaternion -- size = [B, 3, 3] |
|
""" |
|
norm_quat = quat |
|
norm_quat = norm_quat / norm_quat.norm(p=2, dim=1, keepdim=True) |
|
w, x, y, z = norm_quat[:, 0], norm_quat[:, 1], norm_quat[:, 2], norm_quat[:, 3] |
|
|
|
B = quat.size(0) |
|
|
|
w2, x2, y2, z2 = w.pow(2), x.pow(2), y.pow(2), z.pow(2) |
|
wx, wy, wz = w * x, w * y, w * z |
|
xy, xz, yz = x * y, x * z, y * z |
|
|
|
rotMat = torch.stack([w2 + x2 - y2 - z2, 2 * xy - 2 * wz, 2 * wy + 2 * xz, |
|
2 * wz + 2 * xy, w2 - x2 + y2 - z2, 2 * yz - 2 * wx, |
|
2 * xz - 2 * wy, 2 * wx + 2 * yz, w2 - x2 - y2 + z2], dim=1).view(B, 3, 3) |
|
return rotMat |
|
|
|
|
|
def batch_rodrigues(theta): |
|
|
|
batch_size = theta.shape[0] |
|
l1norm = torch.norm(theta + 1e-8, p=2, dim=1) |
|
angle = torch.unsqueeze(l1norm, -1) |
|
normalized = torch.div(theta, angle) |
|
angle = angle * 0.5 |
|
v_cos = torch.cos(angle) |
|
v_sin = torch.sin(angle) |
|
quat = torch.cat([v_cos, v_sin * normalized], dim=1) |
|
|
|
return quat2mat(quat) |
|
|
|
|
|
def batch_orth_proj(X, camera): |
|
''' |
|
X is N x num_points x 3 |
|
''' |
|
camera = camera.clone().view(-1, 1, 3) |
|
X_trans = X[:, :, :2] + camera[:, :, 1:] |
|
X_trans = torch.cat([X_trans, X[:, :, 2:]], 2) |
|
shape = X_trans.shape |
|
|
|
Xn = (camera[:, :, 0:1] * X_trans) |
|
return Xn |
|
|
|
|
|
def batch_persp_proj(vertices, cam, f, t, orig_size=256, eps=1e-9): |
|
''' |
|
Calculate projective transformation of vertices given a projection matrix |
|
Input parameters: |
|
f: torch tensor of focal length |
|
t: batch_size * 1 * 3 xyz translation in world coordinate |
|
K: batch_size * 3 * 3 intrinsic camera matrix |
|
R, t: batch_size * 3 * 3, batch_size * 1 * 3 extrinsic calibration parameters |
|
dist_coeffs: vector of distortion coefficients |
|
orig_size: original size of image captured by the camera |
|
Returns: For each point [X,Y,Z] in world coordinates [u,v,z] where u,v are the coordinates of the projection in |
|
pixels and z is the depth |
|
''' |
|
device = vertices.device |
|
|
|
K = torch.tensor([f, 0., cam['c'][0], 0., f, cam['c'][1], 0., 0., 1.]).view(3, 3)[None, ...].repeat( |
|
vertices.shape[0], 1).to(device) |
|
R = batch_rodrigues(cam['r'][None, ...].repeat(vertices.shape[0], 1)).to(device) |
|
dist_coeffs = cam['k'][None, ...].repeat(vertices.shape[0], 1).to(device) |
|
|
|
vertices = torch.matmul(vertices, R.transpose(2, 1)) + t |
|
x, y, z = vertices[:, :, 0], vertices[:, :, 1], vertices[:, :, 2] |
|
x_ = x / (z + eps) |
|
y_ = y / (z + eps) |
|
|
|
|
|
k1 = dist_coeffs[:, None, 0] |
|
k2 = dist_coeffs[:, None, 1] |
|
p1 = dist_coeffs[:, None, 2] |
|
p2 = dist_coeffs[:, None, 3] |
|
k3 = dist_coeffs[:, None, 4] |
|
|
|
|
|
r = torch.sqrt(x_ ** 2 + y_ ** 2) |
|
x__ = x_ * (1 + k1 * (r ** 2) + k2 * (r ** 4) + k3 * (r ** 6)) + 2 * p1 * x_ * y_ + p2 * (r ** 2 + 2 * x_ ** 2) |
|
y__ = y_ * (1 + k1 * (r ** 2) + k2 * (r ** 4) + k3 * (r ** 6)) + p1 * (r ** 2 + 2 * y_ ** 2) + 2 * p2 * x_ * y_ |
|
vertices = torch.stack([x__, y__, torch.ones_like(z)], dim=-1) |
|
vertices = torch.matmul(vertices, K.transpose(1, 2)) |
|
u, v = vertices[:, :, 0], vertices[:, :, 1] |
|
v = orig_size - v |
|
|
|
u = 2 * (u - orig_size / 2.) / orig_size |
|
v = 2 * (v - orig_size / 2.) / orig_size |
|
vertices = torch.stack([u, v, z], dim=-1) |
|
|
|
return vertices |
|
|
|
|
|
def face_vertices(vertices, faces): |
|
""" |
|
:param vertices: [batch size, number of vertices, 3] |
|
:param faces: [batch size, number of faces, 3] |
|
:return: [batch size, number of faces, 3, 3] |
|
""" |
|
assert (vertices.ndimension() == 3) |
|
assert (faces.ndimension() == 3) |
|
assert (vertices.shape[0] == faces.shape[0]) |
|
assert (vertices.shape[2] == 3) |
|
assert (faces.shape[2] == 3) |
|
|
|
bs, nv = vertices.shape[:2] |
|
bs, nf = faces.shape[:2] |
|
device = vertices.device |
|
faces = faces + (torch.arange(bs, dtype=torch.int32).to(device) * nv)[:, None, None] |
|
vertices = vertices.reshape((bs * nv, 3)) |
|
|
|
return vertices[faces.long()] |
|
|
|
|
|
def vertex_normals(vertices, faces): |
|
""" |
|
:param vertices: [batch size, number of vertices, 3] |
|
:param faces: [batch size, number of faces, 3] |
|
:return: [batch size, number of vertices, 3] |
|
""" |
|
assert (vertices.ndimension() == 3) |
|
assert (faces.ndimension() == 3) |
|
assert (vertices.shape[0] == faces.shape[0]) |
|
assert (vertices.shape[2] == 3) |
|
assert (faces.shape[2] == 3) |
|
|
|
bs, nv = vertices.shape[:2] |
|
bs, nf = faces.shape[:2] |
|
device = vertices.device |
|
normals = torch.zeros(bs * nv, 3).to(device) |
|
|
|
faces = faces + (torch.arange(bs, dtype=torch.int32).to(device) * nv)[:, None, None] |
|
vertices_faces = vertices.reshape((bs * nv, 3))[faces.long()] |
|
|
|
faces = faces.view(-1, 3) |
|
vertices_faces = vertices_faces.view(-1, 3, 3) |
|
|
|
normals.index_add_(0, faces[:, 1].long(), |
|
torch.cross(vertices_faces[:, 2] - vertices_faces[:, 1], vertices_faces[:, 0] - vertices_faces[:, 1])) |
|
normals.index_add_(0, faces[:, 2].long(), |
|
torch.cross(vertices_faces[:, 0] - vertices_faces[:, 2], vertices_faces[:, 1] - vertices_faces[:, 2])) |
|
normals.index_add_(0, faces[:, 0].long(), |
|
torch.cross(vertices_faces[:, 1] - vertices_faces[:, 0], vertices_faces[:, 2] - vertices_faces[:, 0])) |
|
|
|
normals = F.normalize(normals, eps=1e-6, dim=1) |
|
normals = normals.reshape((bs, nv, 3)) |
|
|
|
return normals |
|
|
|
|
|
def tensor_vis_landmarks(images, landmarks, gt_landmarks=None, color='g', isScale=True): |
|
|
|
vis_landmarks = [] |
|
images = images.cpu().numpy() |
|
predicted_landmarks = landmarks.detach().cpu().numpy() |
|
if gt_landmarks is not None: |
|
gt_landmarks_np = gt_landmarks.detach().cpu().numpy() |
|
for i in range(images.shape[0]): |
|
image = images[i] |
|
image = image.transpose(1, 2, 0)[:, :, [2, 1, 0]].copy(); |
|
image = (image * 255) |
|
if isScale: |
|
predicted_landmark = predicted_landmarks[i] * image.shape[0] / 2 + image.shape[0] / 2 |
|
else: |
|
predicted_landmark = predicted_landmarks[i] |
|
|
|
if predicted_landmark.shape[0] == 68: |
|
image_landmarks = plot_kpts(image, predicted_landmark, color) |
|
if gt_landmarks is not None: |
|
image_landmarks = plot_verts(image_landmarks, |
|
gt_landmarks_np[i] * image.shape[0] / 2 + image.shape[0] / 2, 'r') |
|
else: |
|
image_landmarks = plot_verts(image, predicted_landmark, color) |
|
if gt_landmarks is not None: |
|
image_landmarks = plot_verts(image_landmarks, |
|
gt_landmarks_np[i] * image.shape[0] / 2 + image.shape[0] / 2, 'r') |
|
|
|
vis_landmarks.append(image_landmarks) |
|
|
|
vis_landmarks = np.stack(vis_landmarks) |
|
vis_landmarks = torch.from_numpy( |
|
vis_landmarks[:, :, :, [2, 1, 0]].transpose(0, 3, 1, 2)) / 255. |
|
return vis_landmarks |
|
|
|
|
|
end_list = np.array([17, 22, 27, 42, 48, 31, 36, 68], dtype = np.int32) - 1 |
|
def plot_kpts(image, kpts, color = 'r'): |
|
''' Draw 68 key points |
|
Args: |
|
image: the input image |
|
kpt: (68, 3). |
|
''' |
|
if color == 'r': |
|
c = (255, 0, 0) |
|
elif color == 'g': |
|
c = (0, 255, 0) |
|
elif color == 'b': |
|
c = (255, 0, 0) |
|
image = image.copy() |
|
kpts = kpts.copy() |
|
|
|
for i in range(kpts.shape[0]): |
|
st = kpts[i, :2] |
|
if kpts.shape[1]==4: |
|
if kpts[i, 3] > 0.5: |
|
c = (0, 255, 0) |
|
else: |
|
c = (0, 0, 255) |
|
image = cv2.circle(image,(st[0], st[1]), 1, c, 2) |
|
if i in end_list: |
|
continue |
|
ed = kpts[i + 1, :2] |
|
image = cv2.line(image, (st[0], st[1]), (ed[0], ed[1]), (255, 255, 255), 1) |
|
|
|
return image |
|
|
|
|
|
def save_obj(filename, vertices, faces, textures=None, uvcoords=None, uvfaces=None, texture_type='surface'): |
|
assert vertices.ndimension() == 2 |
|
assert faces.ndimension() == 2 |
|
assert texture_type in ['surface', 'vertex'] |
|
|
|
|
|
if textures is not None and texture_type == 'surface': |
|
textures =textures.detach().cpu().numpy().transpose(1,2,0) |
|
filename_mtl = filename[:-4] + '.mtl' |
|
filename_texture = filename[:-4] + '.png' |
|
material_name = 'material_1' |
|
|
|
texture_image = textures |
|
texture_image = texture_image.clip(0, 1) |
|
texture_image = (texture_image * 255).astype('uint8') |
|
imsave(filename_texture, texture_image) |
|
|
|
faces = faces.detach().cpu().numpy() |
|
|
|
with open(filename, 'w') as f: |
|
f.write('# %s\n' % os.path.basename(filename)) |
|
f.write('#\n') |
|
f.write('\n') |
|
|
|
if textures is not None and texture_type != "vertex": |
|
f.write('mtllib %s\n\n' % os.path.basename(filename_mtl)) |
|
|
|
if textures is not None and texture_type == 'vertex': |
|
for vertex, color in zip(vertices, textures): |
|
f.write('v %.8f %.8f %.8f %.8f %.8f %.8f\n' % (vertex[0], vertex[1], vertex[2], |
|
color[0], color[1], color[2])) |
|
f.write('\n') |
|
else: |
|
for vertex in vertices: |
|
f.write('v %.8f %.8f %.8f\n' % (vertex[0], vertex[1], vertex[2])) |
|
f.write('\n') |
|
|
|
if textures is not None and texture_type == 'surface': |
|
for vertex in uvcoords.reshape((-1, 2)): |
|
f.write('vt %.8f %.8f\n' % (vertex[0], vertex[1])) |
|
f.write('\n') |
|
|
|
f.write('usemtl %s\n' % material_name) |
|
for i, face in enumerate(faces): |
|
f.write('f %d/%d %d/%d %d/%d\n' % ( |
|
face[0] + 1, uvfaces[i,0]+1, face[1] + 1, uvfaces[i,1]+1, face[2] + 1, uvfaces[i,2]+1)) |
|
f.write('\n') |
|
else: |
|
for face in faces: |
|
f.write('f %d %d %d\n' % (face[0] + 1, face[1] + 1, face[2] + 1)) |
|
|
|
if textures is not None and texture_type == 'surface': |
|
with open(filename_mtl, 'w') as f: |
|
f.write('newmtl %s\n' % material_name) |
|
f.write('map_Kd %s\n' % os.path.basename(filename_texture)) |
|
|
|
|
|
def dot(x: torch.Tensor, y: torch.Tensor) -> torch.Tensor: |
|
return torch.sum(x*y, -1, keepdim=True) |
|
|
|
def reflect(x: torch.Tensor, n: torch.Tensor) -> torch.Tensor: |
|
return 2*dot(x, n)*n - x |
|
|
|
def length(x: torch.Tensor, eps: float =1e-20) -> torch.Tensor: |
|
return torch.sqrt(torch.clamp(dot(x,x), min=eps)) |
|
|
|
def safe_normalize(x: torch.Tensor, eps: float =1e-20) -> torch.Tensor: |
|
return x / length(x, eps) |
|
|
|
def to_hvec(x: torch.Tensor, w: float) -> torch.Tensor: |
|
return torch.nn.functional.pad(x, pad=(0,1), mode='constant', value=w) |
|
|
|
def compute_face_normals(verts, faces): |
|
i0 = faces[..., 0].long() |
|
i1 = faces[..., 1].long() |
|
i2 = faces[..., 2].long() |
|
|
|
v0 = verts[..., i0, :] |
|
v1 = verts[..., i1, :] |
|
v2 = verts[..., i2, :] |
|
face_normals = torch.cross(v1 - v0, v2 - v0, dim=-1) |
|
return face_normals |
|
|
|
def compute_face_orientation(verts, faces, return_scale=False): |
|
i0 = faces[..., 0].long() |
|
i1 = faces[..., 1].long() |
|
i2 = faces[..., 2].long() |
|
|
|
v0 = verts[..., i0, :] |
|
v1 = verts[..., i1, :] |
|
v2 = verts[..., i2, :] |
|
|
|
a0 = safe_normalize(v1 - v0) |
|
a1 = safe_normalize(torch.cross(a0, v2 - v0, dim=-1)) |
|
a2 = -safe_normalize(torch.cross(a1, a0, dim=-1)) |
|
|
|
orientation = torch.cat([a0[..., None], a1[..., None], a2[..., None]], dim=-1) |
|
|
|
if return_scale: |
|
s0 = length(v1 - v0) |
|
s1 = dot(a2, (v2 - v0)).abs() |
|
scale = (s0 + s1) / 2 |
|
else: |
|
scale = None |
|
return orientation, scale |
|
|
|
def compute_vertex_normals(verts, faces): |
|
i0 = faces[..., 0].long() |
|
i1 = faces[..., 1].long() |
|
i2 = faces[..., 2].long() |
|
|
|
v0 = verts[..., i0, :] |
|
v1 = verts[..., i1, :] |
|
v2 = verts[..., i2, :] |
|
face_normals = torch.cross(v1 - v0, v2 - v0, dim=-1) |
|
v_normals = torch.zeros_like(verts) |
|
N = verts.shape[0] |
|
v_normals.scatter_add_(1, i0[..., None].repeat(N, 1, 3), face_normals) |
|
v_normals.scatter_add_(1, i1[..., None].repeat(N, 1, 3), face_normals) |
|
v_normals.scatter_add_(1, i2[..., None].repeat(N, 1, 3), face_normals) |
|
|
|
v_normals = torch.where(dot(v_normals, v_normals) > 1e-20, v_normals, torch.tensor([0.0, 0.0, 1.0], dtype=torch.float32, device='cuda')) |
|
v_normals = safe_normalize(v_normals) |
|
if torch.is_anomaly_enabled(): |
|
assert torch.all(torch.isfinite(v_normals)) |
|
return v_normals |