|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
import torch |
|
import torch.nn as nn |
|
from accelerate.logging import get_logger |
|
|
|
logger = get_logger(__name__) |
|
|
|
|
|
class DPTHead(nn.Module): |
|
def __init__( |
|
self, |
|
in_channels, |
|
inner_channels, |
|
use_clstoken=False, |
|
out_channel=1024, |
|
): |
|
super(DPTHead, self).__init__() |
|
|
|
self.use_clstoken = use_clstoken |
|
self.projects = nn.ModuleList([ |
|
nn.Conv2d( |
|
in_channels=in_channels, |
|
out_channels=out_channel, |
|
kernel_size=1, |
|
stride=1, |
|
padding=0, |
|
) for out_channel in inner_channels |
|
]) |
|
|
|
if use_clstoken: |
|
self.readout_projects = nn.ModuleList() |
|
for _ in range(len(self.projects)): |
|
self.readout_projects.append( |
|
nn.Sequential( |
|
nn.Linear(2 * in_channels, in_channels), |
|
nn.GELU())) |
|
|
|
self.output_conv = nn.Conv2d(sum(inner_channels) , out_channel, kernel_size=1, stride=1, padding=0) |
|
|
|
|
|
def forward(self, out_features, patch_h, patch_w): |
|
out = [] |
|
for i, x in enumerate(out_features): |
|
if self.use_clstoken: |
|
x, cls_token = x[0], x[1] |
|
readout = cls_token.unsqueeze(1).expand_as(x) |
|
x = self.readout_projects[i](torch.cat((x, readout), -1)) |
|
else: |
|
x = x[0] |
|
|
|
x = x.permute(0, 2, 1).reshape((x.shape[0], x.shape[-1], patch_h, patch_w)) |
|
|
|
x = self.projects[i](x) |
|
|
|
out.append(x) |
|
|
|
fusion_feats = torch.cat(out, dim=1) |
|
|
|
fusion_feats = self.output_conv(fusion_feats) |
|
|
|
return fusion_feats |
|
|
|
|
|
class Dinov2FusionWrapper(nn.Module): |
|
""" |
|
Dinov2FusionWrapper using original implementation, hacked with modulation. |
|
""" |
|
def __init__(self, model_name: str, modulation_dim: int = None, freeze: bool = True, encoder_feat_dim: int = 384): |
|
super().__init__() |
|
self.modulation_dim = modulation_dim |
|
self.model = self._build_dinov2(model_name, modulation_dim=modulation_dim) |
|
|
|
self.intermediate_layer_idx_info = { |
|
'dinov2_vits14_reg': [2, 5, 8, 11], |
|
'dinov2_vitb14_reg': [2, 5, 8, 11], |
|
'dinov2_vitl14_reg': [4, 11, 17, 23], |
|
'dinov2_vitg14_reg': [9, 19, 29, 39] |
|
} |
|
|
|
self.intermediate_layer_idx = self.intermediate_layer_idx_info[model_name] |
|
self.fusion_head = DPTHead(in_channels=self.model.embed_dim, |
|
inner_channels=[self.model.embed_dim] * 4, |
|
out_channel=encoder_feat_dim) |
|
|
|
if freeze: |
|
if modulation_dim is not None: |
|
raise ValueError("Modulated Dinov2 requires training, freezing is not allowed.") |
|
self._freeze() |
|
|
|
|
|
def _freeze(self): |
|
|
|
self.model.eval() |
|
for name, param in self.model.named_parameters(): |
|
param.requires_grad = False |
|
|
|
@staticmethod |
|
def _build_dinov2(model_name: str, modulation_dim: int = None, pretrained: bool = True): |
|
from importlib import import_module |
|
dinov2_hub = import_module(".dinov2.hub.backbones", package=__package__) |
|
model_fn = getattr(dinov2_hub, model_name) |
|
|
|
model = model_fn(modulation_dim=modulation_dim, pretrained=pretrained) |
|
return model |
|
|
|
@torch.compile |
|
def forward(self, image: torch.Tensor, mod: torch.Tensor = None): |
|
|
|
|
|
|
|
|
|
patch_h, patch_w = image.shape[-2] // self.model.patch_size, image.shape[-1] // self.model.patch_size |
|
|
|
features = self.model.get_intermediate_layers(image, self.intermediate_layer_idx, return_class_token=True) |
|
|
|
out_local = self.fusion_head(features, patch_h, patch_w) |
|
|
|
out_global = None |
|
if out_global is not None: |
|
ret = torch.cat([out_local.permute(0, 2, 3, 1).flatten(1, 2), out_global.unsqueeze(1)], dim=1) |
|
else: |
|
ret = out_local.permute(0, 2, 3, 1).flatten(1, 2) |
|
return ret |
|
|