Spaces:
Running
on
Zero
Running
on
Zero
Update app.py
Browse files
app.py
CHANGED
@@ -2,22 +2,21 @@ import gradio as gr
|
|
2 |
import spaces
|
3 |
import torch
|
4 |
from transformers import AutoTokenizer, AutoModelForSequenceClassification
|
5 |
-
import torch.nn.functional as F
|
6 |
-
import torch.nn as nn
|
7 |
import re
|
8 |
import requests
|
9 |
from urllib.parse import urlparse
|
10 |
import xml.etree.ElementTree as ET
|
11 |
|
|
|
12 |
model_path = r'ssocean/NAIP'
|
13 |
device = 'cuda' if torch.cuda.is_available() else 'cpu'
|
14 |
|
15 |
-
|
16 |
model = None
|
17 |
tokenizer = None
|
18 |
|
19 |
def fetch_arxiv_paper(arxiv_input):
|
20 |
-
"""
|
21 |
try:
|
22 |
if 'arxiv.org' in arxiv_input:
|
23 |
parsed = urlparse(arxiv_input)
|
@@ -25,67 +24,57 @@ def fetch_arxiv_paper(arxiv_input):
|
|
25 |
else:
|
26 |
arxiv_id = arxiv_input.strip()
|
27 |
api_url = f'http://export.arxiv.org/api/query?id_list={arxiv_id}'
|
28 |
-
|
29 |
-
if
|
30 |
-
return {"title":
|
31 |
-
root = ET.fromstring(
|
32 |
-
ns = {'
|
33 |
-
entry = root.find('.//
|
34 |
if entry is None:
|
35 |
-
return {"title":
|
36 |
-
title = entry.find('
|
37 |
-
abstract = entry.find('
|
38 |
-
return {"title": title, "abstract": abstract, "success": True, "message": "
|
39 |
except Exception as e:
|
40 |
-
return {"title":
|
41 |
|
42 |
@spaces.GPU(duration=60, enable_queue=True)
|
43 |
def predict(title, abstract):
|
44 |
-
|
45 |
-
abstract = abstract.replace("\n", " ").strip().replace("''", "'")
|
46 |
global model, tokenizer
|
|
|
|
|
47 |
if model is None:
|
48 |
-
|
49 |
-
|
50 |
-
|
51 |
-
|
52 |
-
|
53 |
-
|
54 |
-
|
55 |
-
|
56 |
-
load_in_4bit=False,
|
57 |
-
low_cpu_mem_usage=False
|
58 |
-
)
|
59 |
-
except Exception as e:
|
60 |
-
print(f"첫 λ‘λ© μ€ν¨, μ¬μλ: {e}")
|
61 |
-
model = AutoModelForSequenceClassification.from_pretrained(
|
62 |
-
model_path,
|
63 |
-
num_labels=1,
|
64 |
-
torch_dtype=torch.float32
|
65 |
-
)
|
66 |
-
# 2) deviceμ μ¬λ €λ³΄κΈ° (unsupported error 무μ)
|
67 |
-
try:
|
68 |
-
model.to(device)
|
69 |
-
except ValueError as e:
|
70 |
-
print(f"model.to() 무μ: {e}")
|
71 |
tokenizer = AutoTokenizer.from_pretrained(model_path)
|
|
|
72 |
model.eval()
|
73 |
|
|
|
74 |
text = (
|
75 |
-
f"Given a certain paper
|
76 |
-
f"
|
77 |
-
"
|
|
|
78 |
)
|
|
|
79 |
try:
|
80 |
-
inputs = tokenizer(text, return_tensors="pt")
|
81 |
inputs = {k: v.to(device) for k, v in inputs.items()}
|
82 |
with torch.no_grad():
|
83 |
outputs = model(**inputs)
|
84 |
prob = torch.sigmoid(outputs.logits).item()
|
85 |
-
score = min(1.0, prob + 0.05)
|
86 |
return round(score, 4)
|
87 |
except Exception as e:
|
88 |
-
print(
|
89 |
return 0.0
|
90 |
|
91 |
def get_grade_and_emoji(score):
|
@@ -99,40 +88,18 @@ def get_grade_and_emoji(score):
|
|
99 |
if score >= 0.300: return "CC βοΈ"
|
100 |
return "C π"
|
101 |
|
102 |
-
example_papers = [
|
103 |
-
{
|
104 |
-
"title": "Attention Is All You Need",
|
105 |
-
"abstract": "The dominant sequence transduction models are based on complex recurrent or convolutional neural networks that include an encoder and a decoder. The best performing models also connect the encoder and decoder through an attention mechanism. We propose a new simple network architecture, the Transformer, based solely on attention mechanisms, dispensing with recurrence and convolutions entirely. Experiments on two machine translation tasks show these models to be superior in quality while being more parallelizable and requiring significantly less time to train.",
|
106 |
-
"score": 0.982,
|
107 |
-
"note": "π« Revolutionary paper that introduced the Transformer architecture, fundamentally changing NLP and deep learning."
|
108 |
-
},
|
109 |
-
{
|
110 |
-
"title": "Language Models are Few-Shot Learners",
|
111 |
-
"abstract": "Recent work has demonstrated substantial gains on many NLP tasks and benchmarks by pre-training on a large corpus of text followed by fine-tuning on a specific task. While typically task-agnostic in architecture, this method still requires task-specific fine-tuning datasets of thousands or tens of thousands of examples. By contrast, humans can generally perform a new language task from only a few examples or from simple instructions - something which current NLP systems still largely struggle to do. Here we show that scaling up language models greatly improves task-agnostic, few-shot performance, sometimes even reaching competitiveness with prior state-of-the-art fine-tuning approaches.",
|
112 |
-
"score": 0.956,
|
113 |
-
"note": "π Groundbreaking GPT-3 paper that demonstrated the power of large language models."
|
114 |
-
},
|
115 |
-
{
|
116 |
-
"title": "An Empirical Study of Neural Network Training Protocols",
|
117 |
-
"abstract": "This paper presents a comparative analysis of different training protocols for neural networks across various architectures. We examine the effects of learning rate schedules, batch size selection, and optimization algorithms on model convergence and final performance. Our experiments span multiple datasets and model sizes, providing practical insights for deep learning practitioners.",
|
118 |
-
"score": 0.623,
|
119 |
-
"note": "π Solid research paper with useful findings but more limited scope and impact."
|
120 |
-
}
|
121 |
-
]
|
122 |
-
|
123 |
def validate_input(title, abstract):
|
124 |
-
|
125 |
-
abstract = abstract.replace("\n", " ").strip().replace("''", "'")
|
126 |
non_latin = re.compile(r'[^\u0000-\u007F]')
|
127 |
if len(title.split()) < 3:
|
128 |
-
return False, "
|
129 |
if len(abstract.split()) < 50:
|
130 |
-
return False, "
|
131 |
if non_latin.search(title):
|
132 |
-
return False, "
|
133 |
if non_latin.search(abstract):
|
134 |
-
return False, "
|
135 |
-
return True, "
|
136 |
|
137 |
def update_button_status(title, abstract):
|
138 |
valid, msg = validate_input(title, abstract)
|
@@ -142,12 +109,13 @@ def update_button_status(title, abstract):
|
|
142 |
|
143 |
def process_arxiv_input(arxiv_input):
|
144 |
if not arxiv_input.strip():
|
145 |
-
return "", "", "
|
146 |
-
|
147 |
-
if
|
148 |
-
return
|
149 |
-
return "", "",
|
150 |
|
|
|
151 |
css = """
|
152 |
.gradio-container {
|
153 |
font-family: 'Arial', sans-serif;
|
@@ -216,53 +184,41 @@ css = """
|
|
216 |
}
|
217 |
"""
|
218 |
|
|
|
219 |
with gr.Blocks(theme=gr.themes.Default(), css=css) as iface:
|
220 |
gr.Markdown(
|
221 |
"""
|
222 |
-
# Papers Impact: AI-Powered Research Impact Predictor
|
223 |
## https://discord.gg/openfreeai
|
224 |
-
"""
|
225 |
-
)
|
226 |
gr.HTML("""<a href="https://visitorbadge.io/status?path=https%3A%2F%2FVIDraft-PaperImpact.hf.space">
|
227 |
<img src="https://api.visitorbadge.io/api/visitors?path=https%3A%2F%2FVIDraft-PaperImpact.hf.space&countColor=%23263759" />
|
228 |
</a>""")
|
229 |
|
230 |
with gr.Row():
|
231 |
with gr.Column(elem_classes="input-section"):
|
232 |
-
|
233 |
-
|
234 |
-
|
235 |
-
|
236 |
-
|
237 |
-
|
238 |
-
|
239 |
-
|
240 |
-
gr.Markdown("""
|
241 |
-
<p class="arxiv-note">
|
242 |
-
Click input field to use example paper or browse papers at
|
243 |
-
<a href="https://arxiv.org" target="_blank" class="arxiv-link">arxiv.org</a>
|
244 |
-
</p>
|
245 |
-
""")
|
246 |
-
fetch_button = gr.Button("π Fetch Paper Details", variant="secondary")
|
247 |
-
|
248 |
-
gr.Markdown("### π Or Enter Paper Details Manually")
|
249 |
title_input = gr.Textbox(
|
250 |
lines=2,
|
251 |
-
placeholder="
|
252 |
-
label="
|
253 |
-
)
|
254 |
abstract_input = gr.Textbox(
|
255 |
lines=5,
|
256 |
-
placeholder="
|
257 |
-
label="
|
258 |
-
)
|
259 |
-
|
260 |
-
|
261 |
-
|
262 |
with gr.Column(elem_classes="result-section"):
|
263 |
-
|
264 |
-
|
265 |
-
grade_output = gr.Textbox(label="π Grade", elem_classes="grade-display")
|
266 |
|
267 |
with gr.Row(elem_classes="methodology-section"):
|
268 |
gr.Markdown(
|
@@ -283,44 +239,60 @@ with gr.Blocks(theme=gr.themes.Default(), css=css) as iface:
|
|
283 |
| Grade | Score Range | Description | Indicator |
|
284 |
|-------|-------------|-------------|-----------|
|
285 |
| AAA | 0.900-1.000 | Exceptional Impact | π |
|
286 |
-
| AA
|
287 |
-
| A
|
288 |
-
| BBB | 0.600-0.649 | Above Average
|
289 |
-
| BB
|
290 |
-
| B
|
291 |
-
| CCC | 0.400-0.499 | Below Average
|
292 |
-
| CC
|
293 |
-
| C
|
294 |
"""
|
295 |
)
|
296 |
|
297 |
with gr.Row(elem_classes="example-section"):
|
298 |
gr.Markdown("### π Example Papers")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
299 |
for paper in example_papers:
|
300 |
gr.Markdown(
|
301 |
f"""
|
302 |
#### {paper['title']}
|
303 |
-
**Score**: {paper
|
304 |
{paper['abstract']}
|
305 |
*{paper['note']}*
|
306 |
---
|
307 |
"""
|
308 |
)
|
309 |
|
310 |
-
|
311 |
-
|
312 |
-
|
|
|
313 |
|
314 |
-
def
|
315 |
-
|
316 |
-
|
317 |
-
return score, grade
|
318 |
|
319 |
-
|
320 |
-
process_prediction,
|
321 |
-
inputs=[title_input, abstract_input],
|
322 |
-
outputs=[score_output, grade_output]
|
323 |
-
)
|
324 |
|
325 |
if __name__ == "__main__":
|
326 |
iface.launch()
|
|
|
2 |
import spaces
|
3 |
import torch
|
4 |
from transformers import AutoTokenizer, AutoModelForSequenceClassification
|
|
|
|
|
5 |
import re
|
6 |
import requests
|
7 |
from urllib.parse import urlparse
|
8 |
import xml.etree.ElementTree as ET
|
9 |
|
10 |
+
# λͺ¨λΈ κ²½λ‘μ λλ°μ΄μ€ μ€μ
|
11 |
model_path = r'ssocean/NAIP'
|
12 |
device = 'cuda' if torch.cuda.is_available() else 'cpu'
|
13 |
|
14 |
+
# μ μ λ³μλ‘ λͺ¨λΈΒ·ν ν¬λμ΄μ μ μΈ
|
15 |
model = None
|
16 |
tokenizer = None
|
17 |
|
18 |
def fetch_arxiv_paper(arxiv_input):
|
19 |
+
"""arXiv URL λλ IDλ‘λΆν° μ λͺ©κ³Ό μμ½(fetch)"""
|
20 |
try:
|
21 |
if 'arxiv.org' in arxiv_input:
|
22 |
parsed = urlparse(arxiv_input)
|
|
|
24 |
else:
|
25 |
arxiv_id = arxiv_input.strip()
|
26 |
api_url = f'http://export.arxiv.org/api/query?id_list={arxiv_id}'
|
27 |
+
resp = requests.get(api_url)
|
28 |
+
if resp.status_code != 200:
|
29 |
+
return {"title":"", "abstract":"", "success":False, "message":"arXiv API μλ¬"}
|
30 |
+
root = ET.fromstring(resp.text)
|
31 |
+
ns = {'atom': 'http://www.w3.org/2005/Atom'}
|
32 |
+
entry = root.find('.//atom:entry', ns)
|
33 |
if entry is None:
|
34 |
+
return {"title":"", "abstract":"", "success":False, "message":"λ
Όλ¬Έμ μ°Ύμ μ μμ΅λλ€"}
|
35 |
+
title = entry.find('atom:title', ns).text.strip()
|
36 |
+
abstract = entry.find('atom:summary', ns).text.strip()
|
37 |
+
return {"title": title, "abstract": abstract, "success": True, "message": "μ±κ³΅μ μΌλ‘ κ°μ Έμμ΅λλ€!"}
|
38 |
except Exception as e:
|
39 |
+
return {"title":"", "abstract":"", "success":False, "message":f"μ€λ₯: {e}"}
|
40 |
|
41 |
@spaces.GPU(duration=60, enable_queue=True)
|
42 |
def predict(title, abstract):
|
43 |
+
"""λ
Όλ¬Έ μ λͺ©κ³Ό μμ½μ λ°μ 0~1 μ¬μ΄μ impact score μμΈ‘"""
|
|
|
44 |
global model, tokenizer
|
45 |
+
|
46 |
+
# μ΅μ΄ νΈμΆ μ λͺ¨λΈΒ·ν ν¬λμ΄μ λ‘λ
|
47 |
if model is None:
|
48 |
+
model = AutoModelForSequenceClassification.from_pretrained(
|
49 |
+
model_path,
|
50 |
+
num_labels=1,
|
51 |
+
quantization_config=None, # bitsandbytes μμν μμ λΉνμ±ν
|
52 |
+
torch_dtype=torch.float32, # μ λΆ float32
|
53 |
+
device_map=None, # accelerate dispatch λΉνμ±
|
54 |
+
low_cpu_mem_usage=False
|
55 |
+
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
56 |
tokenizer = AutoTokenizer.from_pretrained(model_path)
|
57 |
+
model.to(device)
|
58 |
model.eval()
|
59 |
|
60 |
+
# μ
λ ₯ ν
μ€νΈ ꡬμ±
|
61 |
text = (
|
62 |
+
f"Given a certain paper,\n"
|
63 |
+
f"Title: {title.strip()}\n"
|
64 |
+
f"Abstract: {abstract.strip()}\n"
|
65 |
+
f"Predict its normalized academic impact (0~1):"
|
66 |
)
|
67 |
+
|
68 |
try:
|
69 |
+
inputs = tokenizer(text, return_tensors="pt", truncation=True, max_length=1024)
|
70 |
inputs = {k: v.to(device) for k, v in inputs.items()}
|
71 |
with torch.no_grad():
|
72 |
outputs = model(**inputs)
|
73 |
prob = torch.sigmoid(outputs.logits).item()
|
74 |
+
score = min(1.0, prob + 0.05) # +0.05 보μ , μ΅λ 1.0
|
75 |
return round(score, 4)
|
76 |
except Exception as e:
|
77 |
+
print("Prediction error:", e)
|
78 |
return 0.0
|
79 |
|
80 |
def get_grade_and_emoji(score):
|
|
|
88 |
if score >= 0.300: return "CC βοΈ"
|
89 |
return "C π"
|
90 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
91 |
def validate_input(title, abstract):
|
92 |
+
"""μ λͺ©Β·μμ½ κΈμ μ λ° λΉμμ΄ λ¬Έμ κ²μ¬"""
|
|
|
93 |
non_latin = re.compile(r'[^\u0000-\u007F]')
|
94 |
if len(title.split()) < 3:
|
95 |
+
return False, "μ λͺ©μ μ΅μ 3λ¨μ΄ μ΄μμ΄μ΄μΌ ν©λλ€."
|
96 |
if len(abstract.split()) < 50:
|
97 |
+
return False, "μμ½μ μ΅μ 50λ¨μ΄ μ΄μμ΄μ΄μΌ ν©λλ€."
|
98 |
if non_latin.search(title):
|
99 |
+
return False, "μ λͺ©μ μμ΄ μΈ λ¬Έμκ° ν¬ν¨λμμ΅λλ€."
|
100 |
if non_latin.search(abstract):
|
101 |
+
return False, "μμ½μ μμ΄ μΈ λ¬Έμκ° ν¬ν¨λμμ΅λλ€."
|
102 |
+
return True, "μ
λ ₯ μ ν¨ν©λλ€."
|
103 |
|
104 |
def update_button_status(title, abstract):
|
105 |
valid, msg = validate_input(title, abstract)
|
|
|
109 |
|
110 |
def process_arxiv_input(arxiv_input):
|
111 |
if not arxiv_input.strip():
|
112 |
+
return "", "", "URL λλ IDλ₯Ό μ
λ ₯νμΈμ"
|
113 |
+
res = fetch_arxiv_paper(arxiv_input)
|
114 |
+
if res["success"]:
|
115 |
+
return res["title"], res["abstract"], res["message"]
|
116 |
+
return "", "", res["message"]
|
117 |
|
118 |
+
# CSS μ μ
|
119 |
css = """
|
120 |
.gradio-container {
|
121 |
font-family: 'Arial', sans-serif;
|
|
|
184 |
}
|
185 |
"""
|
186 |
|
187 |
+
# Gradio UI ꡬμ±
|
188 |
with gr.Blocks(theme=gr.themes.Default(), css=css) as iface:
|
189 |
gr.Markdown(
|
190 |
"""
|
191 |
+
# Papers Impact: AI-Powered Research Impact Predictor
|
192 |
## https://discord.gg/openfreeai
|
193 |
+
""")
|
|
|
194 |
gr.HTML("""<a href="https://visitorbadge.io/status?path=https%3A%2F%2FVIDraft-PaperImpact.hf.space">
|
195 |
<img src="https://api.visitorbadge.io/api/visitors?path=https%3A%2F%2FVIDraft-PaperImpact.hf.space&countColor=%23263759" />
|
196 |
</a>""")
|
197 |
|
198 |
with gr.Row():
|
199 |
with gr.Column(elem_classes="input-section"):
|
200 |
+
gr.Markdown("### π arXivμμ λΆλ¬μ€κΈ°")
|
201 |
+
arxiv_input = gr.Textbox(
|
202 |
+
lines=1,
|
203 |
+
placeholder="arXiv URL λλ ID",
|
204 |
+
label="arXiv URL/ID")
|
205 |
+
fetch_btn = gr.Button("π λΆλ¬μ€κΈ°", variant="secondary")
|
206 |
+
|
207 |
+
gr.Markdown("### π μ§μ μ
λ ₯")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
208 |
title_input = gr.Textbox(
|
209 |
lines=2,
|
210 |
+
placeholder="λ
Όλ¬Έ μ λͺ© (μ΅μ 3λ¨μ΄)",
|
211 |
+
label="μ λͺ©")
|
|
|
212 |
abstract_input = gr.Textbox(
|
213 |
lines=5,
|
214 |
+
placeholder="λ
Όλ¬Έ μμ½ (μ΅μ 50λ¨μ΄)",
|
215 |
+
label="μμ½")
|
216 |
+
status = gr.Textbox(label="βοΈ μ
λ ₯ μν", interactive=False)
|
217 |
+
submit_btn = gr.Button("π― μμΈ‘νκΈ°", interactive=False, variant="primary")
|
218 |
+
|
|
|
219 |
with gr.Column(elem_classes="result-section"):
|
220 |
+
score_out = gr.Number(label="π― Impact Score")
|
221 |
+
grade_out = gr.Textbox(label="π Grade", elem_classes="grade-display")
|
|
|
222 |
|
223 |
with gr.Row(elem_classes="methodology-section"):
|
224 |
gr.Markdown(
|
|
|
239 |
| Grade | Score Range | Description | Indicator |
|
240 |
|-------|-------------|-------------|-----------|
|
241 |
| AAA | 0.900-1.000 | Exceptional Impact | π |
|
242 |
+
| AA | 0.800-0.899 | Very High Impact | β |
|
243 |
+
| A | 0.650-0.799 | High Impact | β¨ |
|
244 |
+
| BBB | 0.600-0.649 | Above Average | π΅ |
|
245 |
+
| BB | 0.550-0.599 | Moderate Impact | π |
|
246 |
+
| B | 0.500-0.549 | Average Impact | π |
|
247 |
+
| CCC | 0.400-0.499 | Below Average | π |
|
248 |
+
| CC | 0.300-0.399 | Low Impact | βοΈ |
|
249 |
+
| C | <0.299 | Limited Impact | π |
|
250 |
"""
|
251 |
)
|
252 |
|
253 |
with gr.Row(elem_classes="example-section"):
|
254 |
gr.Markdown("### π Example Papers")
|
255 |
+
example_papers = [
|
256 |
+
{
|
257 |
+
"title": "Attention Is All You Need",
|
258 |
+
"abstract": "The dominant sequence transduction models are based on complex recurrent or convolutional neural networks that include an encoder and a decoder. The best performing models also connect the encoder and decoder through an attention mechanism. We propose a new simple network architecture, the Transformer, based solely on attention mechanisms, dispensing with recurrence and convolutions entirely. Experiments on two machine translation tasks show these models to be superior in quality while being more parallelizable and requiring significantly less time to train.",
|
259 |
+
"score": 0.982,
|
260 |
+
"note": "π« Revolutionary paper that introduced the Transformer architecture, fundamentally changing NLP and deep learning."
|
261 |
+
},
|
262 |
+
{
|
263 |
+
"title": "Language Models are Few-Shot Learners",
|
264 |
+
"abstract": "Recent work has demonstrated substantial gains on many NLP tasks and benchmarks by pre-training on a large corpus of text followed by fine-tuning on a specific task. While typically task-agnostic in architecture, this method still requires task-specific fine-tuning datasets of thousands or tens of thousands of examples. By contrast, humans can generally perform a new language task from only a few examples or from simple instructions - something which current NLP systems still largely struggle to do. Here we show that scaling up language models greatly improves task-agnostic, few-shot performance, sometimes even reaching competitiveness with prior state-of-the-art fine-tuning approaches.",
|
265 |
+
"score": 0.956,
|
266 |
+
"note": "π Groundbreaking GPT-3 paper that demonstrated the power of large language models."
|
267 |
+
},
|
268 |
+
{
|
269 |
+
"title": "An Empirical Study of Neural Network Training Protocols",
|
270 |
+
"abstract": "This paper presents a comparative analysis of different training protocols for neural networks across various architectures. We examine the effects of learning rate schedules, batch size selection, and optimization algorithms on model convergence and final performance. Our experiments span multiple datasets and model sizes, providing practical insights for deep learning practitioners.",
|
271 |
+
"score": 0.623,
|
272 |
+
"note": "π Solid research paper with useful findings but more limited scope and impact."
|
273 |
+
}
|
274 |
+
]
|
275 |
for paper in example_papers:
|
276 |
gr.Markdown(
|
277 |
f"""
|
278 |
#### {paper['title']}
|
279 |
+
**Score**: {paper['score']} | **Grade**: {get_grade_and_emoji(paper['score'])}
|
280 |
{paper['abstract']}
|
281 |
*{paper['note']}*
|
282 |
---
|
283 |
"""
|
284 |
)
|
285 |
|
286 |
+
# μ΄λ²€νΈ νΈλ€λ¬ μ°κ²°
|
287 |
+
title_input.change(update_button_status, [title_input, abstract_input], [status, submit_btn])
|
288 |
+
abstract_input.change(update_button_status, [title_input, abstract_input], [status, submit_btn])
|
289 |
+
fetch_btn.click(process_arxiv_input, [arxiv_input], [title_input, abstract_input, status])
|
290 |
|
291 |
+
def run_predict(t, a):
|
292 |
+
s = predict(t, a)
|
293 |
+
return s, get_grade_and_emoji(s)
|
|
|
294 |
|
295 |
+
submit_btn.click(run_predict, [title_input, abstract_input], [score_out, grade_out])
|
|
|
|
|
|
|
|
|
296 |
|
297 |
if __name__ == "__main__":
|
298 |
iface.launch()
|