Spaces:
Running
on
Zero
Running
on
Zero
File size: 16,032 Bytes
d55c5b3 6fab39e 1b268e3 6fab39e d55c5b3 6fab39e d55c5b3 fda8fd2 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 |
import gradio as gr
import spaces
import torch
from transformers import AutoConfig, AutoTokenizer, AutoModelForSequenceClassification
import torch.nn.functional as F
import torch.nn as nn
import re
import requests
from urllib.parse import urlparse
import xml.etree.ElementTree as ET
##################################################
# Global setup
##################################################
model_path = "ssocean/NAIP"
device = "cuda" if torch.cuda.is_available() else "cpu"
model = None
tokenizer = None
##################################################
# Fetch paper info from arXiv
##################################################
def fetch_arxiv_paper(arxiv_input):
"""
Fetch paper title & abstract from an arXiv URL or ID.
"""
try:
if "arxiv.org" in arxiv_input:
parsed = urlparse(arxiv_input)
path = parsed.path
arxiv_id = path.split("/")[-1].replace(".pdf", "")
else:
arxiv_id = arxiv_input.strip()
api_url = f"http://export.arxiv.org/api/query?id_list={arxiv_id}"
resp = requests.get(api_url)
if resp.status_code != 200:
return {
"title": "",
"abstract": "",
"success": False,
"message": "Error fetching paper from arXiv API",
}
root = ET.fromstring(resp.text)
ns = {"arxiv": "http://www.w3.org/2005/Atom"}
entry = root.find(".//arxiv:entry", ns)
if entry is None:
return {"title": "", "abstract": "", "success": False, "message": "Paper not found"}
title = entry.find("arxiv:title", ns).text.strip()
abstract = entry.find("arxiv:summary", ns).text.strip()
return {
"title": title,
"abstract": abstract,
"success": True,
"message": "Paper fetched successfully!",
}
except Exception as e:
return {
"title": "",
"abstract": "",
"success": False,
"message": f"Error fetching paper: {e}",
}
##################################################
# Prediction function
##################################################
@spaces.GPU(duration=60, enable_queue=True)
def predict(title, abstract):
"""
Predict a normalized academic impact score (0β1) from title & abstract.
"""
global model, tokenizer
if model is None:
# 1) Load config
config = AutoConfig.from_pretrained(model_path)
# 2) Remove quantization_config if it exists (avoid NoneType error in PEFT)
if hasattr(config, "quantization_config"):
del config.quantization_config
# 3) Optionally set number of labels
config.num_labels = 1
# 4) Load the model
model_loaded = AutoModelForSequenceClassification.from_pretrained(
model_path,
config=config,
torch_dtype=torch.float32, # float32 for stable cublasLt
device_map=None,
low_cpu_mem_usage=False
)
model_loaded.to(device)
model_loaded.eval()
# 5) Load tokenizer
tokenizer_loaded = AutoTokenizer.from_pretrained(model_path)
# Assign to globals
model, tokenizer = model_loaded, tokenizer_loaded
text = (
f"Given a certain paper,\n"
f"Title: {title.strip()}\n"
f"Abstract: {abstract.strip()}\n"
f"Predict its normalized academic impact (0~1):"
)
try:
inputs = tokenizer(text, return_tensors="pt", truncation=True, max_length=1024)
inputs = {k: v.to(device) for k, v in inputs.items()}
with torch.no_grad():
outputs = model(**inputs)
logits = outputs.logits
prob = torch.sigmoid(logits).item()
score = min(1.0, prob + 0.05)
return round(score, 4)
except Exception as e:
print("Prediction error:", e)
return 0.0
##################################################
# Grading
##################################################
def get_grade_and_emoji(score):
"""Map a 0β1 score to an A/B/C style grade with an emoji indicator."""
if score >= 0.900:
return "AAA π"
if score >= 0.800:
return "AA β"
if score >= 0.650:
return "A β¨"
if score >= 0.600:
return "BBB π΅"
if score >= 0.550:
return "BB π"
if score >= 0.500:
return "B π"
if score >= 0.400:
return "CCC π"
if score >= 0.300:
return "CC βοΈ"
return "C π"
##################################################
# Validation
##################################################
def validate_input(title, abstract):
"""
Ensure the title has at least 3 words, the abstract at least 50,
and check for ASCII-only characters.
"""
non_ascii = re.compile(r"[^\x00-\x7F]")
if len(title.split()) < 3:
return False, "Title must be at least 3 words."
if len(abstract.split()) < 50:
return False, "Abstract must be at least 50 words."
if non_ascii.search(title):
return False, "Title contains non-ASCII characters."
if non_ascii.search(abstract):
return False, "Abstract contains non-ASCII characters."
return True, "Inputs look good."
def update_button_status(title, abstract):
"""Enable or disable the predict button based on validation."""
valid, msg = validate_input(title, abstract)
if not valid:
return gr.update(value="Error: " + msg), gr.update(interactive=False)
return gr.update(value=msg), gr.update(interactive=True)
##################################################
# Process arXiv input
##################################################
def process_arxiv_input(arxiv_input):
"""
Called when user clicks 'Fetch Paper Details' to fill in title/abstract from arXiv.
"""
if not arxiv_input.strip():
return "", "", "Please enter an arXiv URL or ID"
res = fetch_arxiv_paper(arxiv_input)
if res["success"]:
return res["title"], res["abstract"], res["message"]
return "", "", res["message"]
##################################################
# Custom CSS
##################################################
css = """
.gradio-container { font-family: Arial, sans-serif; }
.main-title {
text-align: center; color: #2563eb; font-size: 2.5rem!important;
margin-bottom:1rem!important;
background: linear-gradient(45deg,#2563eb,#1d4ed8);
-webkit-background-clip: text; -webkit-text-fill-color: transparent;
}
.input-section {
background:#fff; padding:1.5rem; border-radius:0.5rem;
box-shadow:0 4px 6px rgba(0,0,0,0.1);
}
.result-section {
background:#f7f9fc; padding:1.5rem; border-radius:0.5rem;
margin-top:2rem;
}
.grade-display {
font-size:2.5rem; text-align:center; margin-top:1rem;
}
.arxiv-input {
margin-bottom:1.5rem; padding:1rem; background:#f3f4f6;
border-radius:0.5rem;
}
.arxiv-link {
color:#2563eb; text-decoration: underline;
}
"""
##################################################
# Header HTML (social links)
##################################################
header_html = """
<div align="center" style="line-height: 1;">
<a href="https://discord.gg/openfreeai" style="margin: 2px;">
<img alt="OpenFree AI Discord Server" src="https://img.shields.io/badge/Discord-000000?style=for-the-badge&logo=discord&logoColor=000&logoColor=white" style="display: inline-block; vertical-align: middle;"/>
</a>
<a href="https://x.com/openfree_ai" style="margin: 2px;">
<img alt="X.ai" src="https://img.shields.io/badge/openfree_ai-000000?style=for-the-badge&logo=X&logoColor=000&color=000&labelColor=white" style="display: inline-block; vertical-align: middle;"/>
</a>
<a href="https://huggingface.co./collections/VIDraft/best-open-ai-services-68057e6e312880ea92abaf4c" style="margin: 2px;">
<img alt="Collections" src="https://img.shields.io/badge/Collections-f000000?style=for-the-badge&logo=huggingface&logoColor=000&labelColor" style="display: inline-block; vertical-align: middle;"/>
</a>
<a href="https://huggingface.co./VIDraft" style="margin: 2px;">
<img alt="HF Page" src="https://img.shields.io/badge/VIDraft-fcd022?style=for-the-badge&logo=huggingface&logoColor=000&labelColor" style="display: inline-block; vertical-align: middle;"/>
</a>
</div>
<div align="center" style="font-weight: bold; margin-top: 10px; margin-bottom: 15px;">
<b>Papers Leaderboard: <a href="https://huggingface.co./spaces/Heartsync/Papers-Leaderboard">https://huggingface.co./spaces/Heartsync/Papers-Leaderboard</a></b>
</div>
"""
##################################################
# Example Papers
##################################################
example_papers = [
{
"title": "Attention Is All You Need",
"abstract": (
"The dominant sequence transduction models are based on complex recurrent or "
"convolutional neural networks that include an encoder and a decoder. The best performing "
"models also connect the encoder and decoder through an attention mechanism. We propose a "
"new simple network architecture, the Transformer, based solely on attention mechanisms, "
"dispensing with recurrence and convolutions entirely. Experiments on two machine "
"translation tasks show these models to be superior in quality while being more "
"parallelizable and requiring significantly less time to train."
),
"score": 0.982,
"note": "Revolutionary paper that introduced the Transformer architecture."
},
{
"title": "Language Models are Few-Shot Learners",
"abstract": (
"Recent work has demonstrated substantial gains on many NLP tasks and benchmarks by "
"pre-training on a large corpus of text followed by fine-tuning on a specific task. While "
"typically task-agnostic in architecture, this method still requires task-specific "
"fine-tuning datasets of thousands or tens of thousands of examples. By contrast, humans "
"can generally perform a new language task from only a few examples or from simple "
"instructionsβsomething which current NLP systems still largely struggle to do. Here we "
"show that scaling up language models greatly improves task-agnostic, few-shot "
"performance, sometimes even reaching competitiveness with prior state-of-the-art "
"fine-tuning approaches."
),
"score": 0.956,
"note": "Groundbreaking GPT-3 paper on few-shot learning."
},
{
"title": "An Empirical Study of Neural Network Training Protocols",
"abstract": (
"This paper presents a comparative analysis of different training protocols for neural "
"networks across various architectures. We examine the effects of learning rate schedules, "
"batch size selection, and optimization algorithms on model convergence and final "
"performance. Our experiments span multiple datasets and model sizes, providing practical "
"insights for deep learning practitioners."
),
"score": 0.623,
"note": "Solid empirical comparison of training protocols."
}
]
##################################################
# Build the Gradio Interface
##################################################
with gr.Blocks(theme=gr.themes.Default(), css=css) as iface:
# Add the social media links and leaderboard link at the top
gr.HTML(header_html)
gr.Markdown("<div class='main-title'>Papers Impact: AI-Powered Research Impact Predictor</div>")
gr.Markdown("**Predict the potential research impact (0β1) from title & abstract.**")
with gr.Row():
with gr.Column(elem_classes="input-section"):
gr.Markdown("### Import from arXiv")
with gr.Group(elem_classes="arxiv-input"):
arxiv_input = gr.Textbox(
lines=1,
placeholder="e.g. 2504.11651",
label="arXiv URL or ID",
value="2504.11651"
)
gr.Markdown(
"""
<p>
Enter an arXiv ID or URL. For example:
<code>2504.11651</code> or <code>https://arxiv.org/pdf/2504.11651</code>
</p>
"""
)
fetch_btn = gr.Button("π Fetch Paper Details", variant="secondary")
gr.Markdown("### Or Enter Manually")
title_input = gr.Textbox(
lines=2,
placeholder="Paper title (β₯3 words)...",
label="Paper Title"
)
abs_input = gr.Textbox(
lines=5,
placeholder="Paper abstract (β₯50 words)...",
label="Paper Abstract"
)
status_box = gr.Textbox(label="Validation Status", interactive=False)
predict_btn = gr.Button("π― Predict Impact", interactive=False, variant="primary")
with gr.Column(elem_classes="result-section"):
score_box = gr.Number(label="Impact Score")
grade_box = gr.Textbox(label="Grade", elem_classes="grade-display")
############## METHODOLOGY EXPLANATION ##############
gr.Markdown(
"""
### Scientific Methodology
- **Training Data**: Model trained on an extensive dataset of published papers in CS.CV, CS.CL, CS.AI
- **Optimization**: NDCG optimization with Sigmoid activation and MSE loss
- **Validation**: Cross-validated against historical citation data
- **Architecture**: Advanced transformer-based (LLaMA derivative) textual encoder
- **Metrics**: Quantitative analysis of citation patterns and research influence
"""
)
############## RATING SCALE ##############
gr.Markdown(
"""
### Rating Scale
| Grade | Score Range | Description | Emoji |
|-------|-------------|---------------------|-------|
| AAA | 0.900β1.000 | **Exceptional** | π |
| AA | 0.800β0.899 | **Very High** | β |
| A | 0.650β0.799 | **High** | β¨ |
| BBB | 0.600β0.649 | **Above Average** | π΅ |
| BB | 0.550β0.599 | **Moderate** | π |
| B | 0.500β0.549 | **Average** | π |
| CCC | 0.400β0.499 | **Below Average** | π |
| CC | 0.300β0.399 | **Low** | βοΈ |
| C | <0.300 | **Limited** | π |
"""
)
############## EXAMPLE PAPERS ##############
gr.Markdown("### Example Papers")
for paper in example_papers:
gr.Markdown(
f"**{paper['title']}** \n"
f"Score: {paper['score']} | Grade: {get_grade_and_emoji(paper['score'])} \n"
f"{paper['abstract']} \n"
f"*{paper['note']}*\n---"
)
##################################################
# Events
##################################################
# Validation triggers
title_input.change(update_button_status, [title_input, abs_input], [status_box, predict_btn])
abs_input.change(update_button_status, [title_input, abs_input], [status_box, predict_btn])
# arXiv fetch
fetch_btn.click(process_arxiv_input, [arxiv_input], [title_input, abs_input, status_box])
# Predict handler
def run_predict(t, a):
s = predict(t, a)
return s, get_grade_and_emoji(s)
predict_btn.click(run_predict, [title_input, abs_input], [score_box, grade_box])
##################################################
# Launch
##################################################
if __name__ == "__main__":
iface.launch() |