Spaces:
Running
on
Zero
Running
on
Zero
File size: 31,559 Bytes
da87199 e80ec12 da87199 05dc4f5 da87199 5718b5c 75b15f6 5718b5c 00dba49 e80ec12 417b22d 05dc4f5 417b22d c19847c 417b22d 657527f 0889c6d 657527f 0889c6d 4bf30b7 0889c6d 657527f 417b22d beb0aac 05dc4f5 417b22d 05dc4f5 417b22d beb0aac 371a9fc 417b22d beb0aac 417b22d 371a9fc 417b22d beb0aac 41f2f65 beb0aac 417b22d beb0aac 417b22d beb0aac 417b22d 371a9fc 6962585 417b22d 371a9fc 6962585 371a9fc 6962585 371a9fc 6962585 dde0f10 6962585 371a9fc beb0aac 6962585 dde0f10 6962585 dde0f10 6962585 beb0aac 417b22d c19847c 05dc4f5 c19847c 56479f5 67b6c61 4bf30b7 da87199 1670280 e80ec12 da87199 5718b5c c19847c 5718b5c c19847c 75b15f6 c19847c 75b15f6 ced8ba1 5718b5c 75b15f6 1670280 75b15f6 c19847c 75b15f6 5718b5c 75b15f6 1670280 75b15f6 00dba49 c19847c c42f5fd c19847c 5718b5c 00dba49 ced8ba1 5718b5c ced8ba1 00dba49 5718b5c 00dba49 c19847c 5718b5c c19847c da87199 ced8ba1 da87199 ced8ba1 da87199 75b15f6 1670280 75b15f6 da87199 c3d078f da87199 ced8ba1 c3d078f da87199 c19847c e80ec12 c19847c da87199 c19847c a9e7179 5718b5c da87199 e80ec12 da87199 ced8ba1 5718b5c da87199 e80ec12 da87199 e80ec12 da87199 5718b5c da87199 e80ec12 da87199 e80ec12 da87199 c19847c 5718b5c c19847c da87199 ced8ba1 da87199 ced8ba1 da87199 00dba49 da87199 c19847c 5718b5c c19847c ced8ba1 c19847c ced8ba1 e80ec12 da87199 e80ec12 da87199 ced8ba1 75b15f6 00dba49 c3d078f 5718b5c c3d078f 75b15f6 c3d078f 75b15f6 da87199 00dba49 5718b5c 00dba49 c3d078f e80ec12 c3d078f ced8ba1 c19847c 657527f e80ec12 00dba49 75b15f6 c3d078f e80ec12 da87199 ced8ba1 c19847c 5718b5c c19847c da87199 5718b5c da87199 ced8ba1 657527f ced8ba1 da87199 e80ec12 c19847c 05dc4f5 c19847c da87199 417b22d 657527f da87199 e80ec12 ced8ba1 05dc4f5 e828578 05dc4f5 657527f 05dc4f5 9237ddf dde0f10 59770ec dde0f10 59770ec 657527f 05dc4f5 417b22d ced8ba1 05dc4f5 ced8ba1 05dc4f5 e80ec12 ced8ba1 e80ec12 ced8ba1 dde0f10 ced8ba1 05dc4f5 4bf30b7 ced8ba1 c19847c ced8ba1 dde0f10 e80ec12 4bf30b7 dde0f10 c19847c 5eb62f9 c19847c da87199 5eb62f9 9de7a98 c19847c f89a031 d36bd86 5eb62f9 d36bd86 c19847c f89a031 5eb62f9 86c2c71 f89a031 c19847c d7fbecb 5eb62f9 d7fbecb c19847c f89a031 5eb62f9 86c2c71 f89a031 c19847c f89a031 5eb62f9 35e3ef0 f89a031 c19847c f89a031 5eb62f9 35e3ef0 f89a031 c19847c f89a031 5eb62f9 f89a031 da87199 5eb62f9 35e3ef0 f89a031 c19847c f89a031 5eb62f9 f89a031 5eb62f9 f89a031 5eb62f9 f89a031 c872798 da87199 c19847c e828578 c19847c 417b22d dc16673 417b22d 1ddc7cb 417b22d dc16673 417b22d e828578 dc16673 417b22d 1ddc7cb dc16673 fcb9dfb dc16673 417b22d fcb9dfb 417b22d fcb9dfb 417b22d fcb9dfb dc16673 fcb9dfb dc16673 fcb9dfb dc16673 fcb9dfb dc16673 fcb9dfb 1ddc7cb fcb9dfb 1ddc7cb fcb9dfb 1ddc7cb fcb9dfb 1ddc7cb fcb9dfb 1ddc7cb 417b22d fcb9dfb 417b22d bdad5ad 417b22d 6e8115a 417b22d 6964d3d 6e8115a 417b22d bdad5ad 417b22d dde0f10 6e8115a 9a70f56 417b22d 9a70f56 da87199 9a70f56 223aa70 9a70f56 e828578 9a70f56 417b22d 0889c6d e828578 5eb62f9 9a70f56 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 |
#!/usr/bin/env python
import os
import re
import tempfile
import gc # garbage collector ์ถ๊ฐ
from collections.abc import Iterator
from threading import Thread
import json
import requests
import cv2
import gradio as gr
import spaces
import torch
from loguru import logger
from PIL import Image
from transformers import AutoProcessor, Gemma3ForConditionalGeneration, TextIteratorStreamer
# CSV/TXT ๋ถ์
import pandas as pd
# PDF ํ
์คํธ ์ถ์ถ
import PyPDF2
##############################################################################
# ๋ฉ๋ชจ๋ฆฌ ์ ๋ฆฌ ํจ์ ์ถ๊ฐ
##############################################################################
def clear_cuda_cache():
"""CUDA ์บ์๋ฅผ ๋ช
์์ ์ผ๋ก ๋น์๋๋ค."""
if torch.cuda.is_available():
torch.cuda.empty_cache()
gc.collect()
##############################################################################
# SERPHouse API key from environment variable
##############################################################################
SERPHOUSE_API_KEY = os.getenv("SERPHOUSE_API_KEY", "")
##############################################################################
# ๊ฐ๋จํ ํค์๋ ์ถ์ถ ํจ์ (ํ๊ธ + ์ํ๋ฒณ + ์ซ์ + ๊ณต๋ฐฑ ๋ณด์กด)
##############################################################################
def extract_keywords(text: str, top_k: int = 5) -> str:
"""
1) ํ๊ธ(๊ฐ-ํฃ), ์์ด(a-zA-Z), ์ซ์(0-9), ๊ณต๋ฐฑ๋ง ๋จ๊น
2) ๊ณต๋ฐฑ ๊ธฐ์ค ํ ํฐ ๋ถ๋ฆฌ
3) ์ต๋ top_k๊ฐ๋ง
"""
text = re.sub(r"[^a-zA-Z0-9๊ฐ-ํฃ\s]", "", text)
tokens = text.split()
key_tokens = tokens[:top_k]
return " ".join(key_tokens)
##############################################################################
# SerpHouse Live endpoint ํธ์ถ
# - ์์ 20๊ฐ ๊ฒฐ๊ณผ JSON์ LLM์ ๋๊ธธ ๋ link, snippet ๋ฑ ๋ชจ๋ ํฌํจ
##############################################################################
def do_web_search(query: str) -> str:
"""
์์ 20๊ฐ 'organic' ๊ฒฐ๊ณผ item ์ ์ฒด(์ ๋ชฉ, link, snippet ๋ฑ)๋ฅผ
JSON ๋ฌธ์์ด ํํ๋ก ๋ฐํ
"""
try:
url = "https://api.serphouse.com/serp/live"
# ๊ธฐ๋ณธ GET ๋ฐฉ์์ผ๋ก ํ๋ผ๋ฏธํฐ ๊ฐ์ํํ๊ณ ๊ฒฐ๊ณผ ์๋ฅผ 20๊ฐ๋ก ์ ํ
params = {
"q": query,
"domain": "google.com",
"serp_type": "web", # ๊ธฐ๋ณธ ์น ๊ฒ์
"device": "desktop",
"lang": "en",
"num": "20" # ์ต๋ 20๊ฐ ๊ฒฐ๊ณผ๋ง ์์ฒญ
}
headers = {
"Authorization": f"Bearer {SERPHOUSE_API_KEY}"
}
logger.info(f"SerpHouse API ํธ์ถ ์ค... ๊ฒ์์ด: {query}")
logger.info(f"์์ฒญ URL: {url} - ํ๋ผ๋ฏธํฐ: {params}")
# GET ์์ฒญ ์ํ
response = requests.get(url, headers=headers, params=params, timeout=60)
response.raise_for_status()
logger.info(f"SerpHouse API ์๋ต ์ํ ์ฝ๋: {response.status_code}")
data = response.json()
# ๋ค์ํ ์๋ต ๊ตฌ์กฐ ์ฒ๋ฆฌ
results = data.get("results", {})
organic = None
# ๊ฐ๋ฅํ ์๋ต ๊ตฌ์กฐ 1
if isinstance(results, dict) and "organic" in results:
organic = results["organic"]
# ๊ฐ๋ฅํ ์๋ต ๊ตฌ์กฐ 2 (์ค์ฒฉ๋ results)
elif isinstance(results, dict) and "results" in results:
if isinstance(results["results"], dict) and "organic" in results["results"]:
organic = results["results"]["organic"]
# ๊ฐ๋ฅํ ์๋ต ๊ตฌ์กฐ 3 (์ต์์ organic)
elif "organic" in data:
organic = data["organic"]
if not organic:
logger.warning("์๋ต์์ organic ๊ฒฐ๊ณผ๋ฅผ ์ฐพ์ ์ ์์ต๋๋ค.")
logger.debug(f"์๋ต ๊ตฌ์กฐ: {list(data.keys())}")
if isinstance(results, dict):
logger.debug(f"results ๊ตฌ์กฐ: {list(results.keys())}")
return "No web search results found or unexpected API response structure."
# ๊ฒฐ๊ณผ ์ ์ ํ ๋ฐ ์ปจํ
์คํธ ๊ธธ์ด ์ต์ ํ
max_results = min(20, len(organic))
limited_organic = organic[:max_results]
# ๊ฒฐ๊ณผ ํ์ ๊ฐ์ - ๋งํฌ๋ค์ด ํ์์ผ๋ก ์ถ๋ ฅํ์ฌ ๊ฐ๋
์ฑ ํฅ์
summary_lines = []
for idx, item in enumerate(limited_organic, start=1):
title = item.get("title", "No title")
link = item.get("link", "#")
snippet = item.get("snippet", "No description")
displayed_link = item.get("displayed_link", link)
# ๋งํฌ๋ค์ด ํ์ (๋งํฌ ํด๋ฆญ ๊ฐ๋ฅ)
summary_lines.append(
f"### Result {idx}: {title}\n\n"
f"{snippet}\n\n"
f"**์ถ์ฒ**: [{displayed_link}]({link})\n\n"
f"---\n"
)
# ๋ชจ๋ธ์๊ฒ ๋ช
ํํ ์ง์นจ ์ถ๊ฐ
instructions = """
# ์น ๊ฒ์ ๊ฒฐ๊ณผ
์๋๋ ๊ฒ์ ๊ฒฐ๊ณผ์
๋๋ค. ์ง๋ฌธ์ ๋ต๋ณํ ๋ ์ด ์ ๋ณด๋ฅผ ํ์ฉํ์ธ์:
1. ๊ฐ ๊ฒฐ๊ณผ์ ์ ๋ชฉ, ๋ด์ฉ, ์ถ์ฒ ๋งํฌ๋ฅผ ์ฐธ๊ณ ํ์ธ์
2. ๋ต๋ณ์ ๊ด๋ จ ์ ๋ณด์ ์ถ์ฒ๋ฅผ ๋ช
์์ ์ผ๋ก ์ธ์ฉํ์ธ์ (์: "X ์ถ์ฒ์ ๋ฐ๋ฅด๋ฉด...")
3. ์๋ต์ ์ค์ ์ถ์ฒ ๋งํฌ๋ฅผ ํฌํจํ์ธ์
4. ์ฌ๋ฌ ์ถ์ฒ์ ์ ๋ณด๋ฅผ ์ข
ํฉํ์ฌ ๋ต๋ณํ์ธ์
"""
search_results = instructions + "\n".join(summary_lines)
logger.info(f"๊ฒ์ ๊ฒฐ๊ณผ {len(limited_organic)}๊ฐ ์ฒ๋ฆฌ ์๋ฃ")
return search_results
except Exception as e:
logger.error(f"Web search failed: {e}")
return f"Web search failed: {str(e)}"
##############################################################################
# ๋ชจ๋ธ/ํ๋ก์ธ์ ๋ก๋ฉ
##############################################################################
MAX_CONTENT_CHARS = 2000
MAX_INPUT_LENGTH = 2096 # ์ต๋ ์
๋ ฅ ํ ํฐ ์ ์ ํ ์ถ๊ฐ
model_id = os.getenv("MODEL_ID", "VIDraft/Gemma-3-R1984-4B")
processor = AutoProcessor.from_pretrained(model_id, padding_side="left")
model = Gemma3ForConditionalGeneration.from_pretrained(
model_id,
device_map="auto",
torch_dtype=torch.bfloat16,
attn_implementation="eager" # ๊ฐ๋ฅํ๋ค๋ฉด "flash_attention_2"๋ก ๋ณ๊ฒฝ
)
MAX_NUM_IMAGES = int(os.getenv("MAX_NUM_IMAGES", "5"))
##############################################################################
# CSV, TXT, PDF ๋ถ์ ํจ์
##############################################################################
def analyze_csv_file(path: str) -> str:
"""
CSV ํ์ผ์ ์ ์ฒด ๋ฌธ์์ด๋ก ๋ณํ. ๋๋ฌด ๊ธธ ๊ฒฝ์ฐ ์ผ๋ถ๋ง ํ์.
"""
try:
df = pd.read_csv(path)
if df.shape[0] > 50 or df.shape[1] > 10:
df = df.iloc[:50, :10]
df_str = df.to_string()
if len(df_str) > MAX_CONTENT_CHARS:
df_str = df_str[:MAX_CONTENT_CHARS] + "\n...(truncated)..."
return f"**[CSV File: {os.path.basename(path)}]**\n\n{df_str}"
except Exception as e:
return f"Failed to read CSV ({os.path.basename(path)}): {str(e)}"
def analyze_txt_file(path: str) -> str:
"""
TXT ํ์ผ ์ ๋ฌธ ์ฝ๊ธฐ. ๋๋ฌด ๊ธธ๋ฉด ์ผ๋ถ๋ง ํ์.
"""
try:
with open(path, "r", encoding="utf-8") as f:
text = f.read()
if len(text) > MAX_CONTENT_CHARS:
text = text[:MAX_CONTENT_CHARS] + "\n...(truncated)..."
return f"**[TXT File: {os.path.basename(path)}]**\n\n{text}"
except Exception as e:
return f"Failed to read TXT ({os.path.basename(path)}): {str(e)}"
def pdf_to_markdown(pdf_path: str) -> str:
"""
PDF ํ
์คํธ๋ฅผ Markdown์ผ๋ก ๋ณํ. ํ์ด์ง๋ณ๋ก ๊ฐ๋จํ ํ
์คํธ ์ถ์ถ.
"""
text_chunks = []
try:
with open(pdf_path, "rb") as f:
reader = PyPDF2.PdfReader(f)
max_pages = min(5, len(reader.pages))
for page_num in range(max_pages):
page = reader.pages[page_num]
page_text = page.extract_text() or ""
page_text = page_text.strip()
if page_text:
if len(page_text) > MAX_CONTENT_CHARS // max_pages:
page_text = page_text[:MAX_CONTENT_CHARS // max_pages] + "...(truncated)"
text_chunks.append(f"## Page {page_num+1}\n\n{page_text}\n")
if len(reader.pages) > max_pages:
text_chunks.append(f"\n...(Showing {max_pages} of {len(reader.pages)} pages)...")
except Exception as e:
return f"Failed to read PDF ({os.path.basename(pdf_path)}): {str(e)}"
full_text = "\n".join(text_chunks)
if len(full_text) > MAX_CONTENT_CHARS:
full_text = full_text[:MAX_CONTENT_CHARS] + "\n...(truncated)..."
return f"**[PDF File: {os.path.basename(pdf_path)}]**\n\n{full_text}"
##############################################################################
# ์ด๋ฏธ์ง/๋น๋์ค ์
๋ก๋ ์ ํ ๊ฒ์ฌ
##############################################################################
def count_files_in_new_message(paths: list[str]) -> tuple[int, int]:
image_count = 0
video_count = 0
for path in paths:
if path.endswith(".mp4"):
video_count += 1
elif re.search(r"\.(png|jpg|jpeg|gif|webp)$", path, re.IGNORECASE):
image_count += 1
return image_count, video_count
def count_files_in_history(history: list[dict]) -> tuple[int, int]:
image_count = 0
video_count = 0
for item in history:
if item["role"] != "user" or isinstance(item["content"], str):
continue
if isinstance(item["content"], list) and len(item["content"]) > 0:
file_path = item["content"][0]
if isinstance(file_path, str):
if file_path.endswith(".mp4"):
video_count += 1
elif re.search(r"\.(png|jpg|jpeg|gif|webp)$", file_path, re.IGNORECASE):
image_count += 1
return image_count, video_count
def validate_media_constraints(message: dict, history: list[dict]) -> bool:
media_files = []
for f in message["files"]:
if re.search(r"\.(png|jpg|jpeg|gif|webp)$", f, re.IGNORECASE) or f.endswith(".mp4"):
media_files.append(f)
new_image_count, new_video_count = count_files_in_new_message(media_files)
history_image_count, history_video_count = count_files_in_history(history)
image_count = history_image_count + new_image_count
video_count = history_video_count + new_video_count
if video_count > 1:
gr.Warning("Only one video is supported.")
return False
if video_count == 1:
if image_count > 0:
gr.Warning("Mixing images and videos is not allowed.")
return False
if "<image>" in message["text"]:
gr.Warning("Using <image> tags with video files is not supported.")
return False
if video_count == 0 and image_count > MAX_NUM_IMAGES:
gr.Warning(f"You can upload up to {MAX_NUM_IMAGES} images.")
return False
if "<image>" in message["text"]:
image_files = [f for f in message["files"] if re.search(r"\.(png|jpg|jpeg|gif|webp)$", f, re.IGNORECASE)]
image_tag_count = message["text"].count("<image>")
if image_tag_count != len(image_files):
gr.Warning("The number of <image> tags in the text does not match the number of image files.")
return False
return True
##############################################################################
# ๋น๋์ค ์ฒ๋ฆฌ - ์์ ํ์ผ ์ถ์ ์ฝ๋ ์ถ๊ฐ
##############################################################################
def downsample_video(video_path: str) -> list[tuple[Image.Image, float]]:
vidcap = cv2.VideoCapture(video_path)
fps = vidcap.get(cv2.CAP_PROP_FPS)
total_frames = int(vidcap.get(cv2.CAP_PROP_FRAME_COUNT))
frame_interval = max(int(fps), int(total_frames / 10))
frames = []
for i in range(0, total_frames, frame_interval):
vidcap.set(cv2.CAP_PROP_POS_FRAMES, i)
success, image = vidcap.read()
if success:
image = cv2.cvtColor(image, cv2.COLOR_BGR2RGB)
# ์ด๋ฏธ์ง ํฌ๊ธฐ ์ค์ด๊ธฐ ์ถ๊ฐ
image = cv2.resize(image, (0, 0), fx=0.5, fy=0.5)
pil_image = Image.fromarray(image)
timestamp = round(i / fps, 2)
frames.append((pil_image, timestamp))
if len(frames) >= 5:
break
vidcap.release()
return frames
def process_video(video_path: str) -> tuple[list[dict], list[str]]:
content = []
temp_files = [] # ์์ ํ์ผ ์ถ์ ์ ์ํ ๋ฆฌ์คํธ
frames = downsample_video(video_path)
for frame in frames:
pil_image, timestamp = frame
with tempfile.NamedTemporaryFile(delete=False, suffix=".png") as temp_file:
pil_image.save(temp_file.name)
temp_files.append(temp_file.name) # ์ถ์ ์ ์ํด ๊ฒฝ๋ก ์ ์ฅ
content.append({"type": "text", "text": f"Frame {timestamp}:"})
content.append({"type": "image", "url": temp_file.name})
return content, temp_files
##############################################################################
# interleaved <image> ์ฒ๋ฆฌ
##############################################################################
def process_interleaved_images(message: dict) -> list[dict]:
parts = re.split(r"(<image>)", message["text"])
content = []
image_index = 0
image_files = [f for f in message["files"] if re.search(r"\.(png|jpg|jpeg|gif|webp)$", f, re.IGNORECASE)]
for part in parts:
if part == "<image>" and image_index < len(image_files):
content.append({"type": "image", "url": image_files[image_index]})
image_index += 1
elif part.strip():
content.append({"type": "text", "text": part.strip()})
else:
if isinstance(part, str) and part != "<image>":
content.append({"type": "text", "text": part})
return content
##############################################################################
# PDF + CSV + TXT + ์ด๋ฏธ์ง/๋น๋์ค
##############################################################################
def is_image_file(file_path: str) -> bool:
return bool(re.search(r"\.(png|jpg|jpeg|gif|webp)$", file_path, re.IGNORECASE))
def is_video_file(file_path: str) -> bool:
return file_path.endswith(".mp4")
def is_document_file(file_path: str) -> bool:
return (
file_path.lower().endswith(".pdf")
or file_path.lower().endswith(".csv")
or file_path.lower().endswith(".txt")
)
def process_new_user_message(message: dict) -> tuple[list[dict], list[str]]:
temp_files = [] # ์์ ํ์ผ ์ถ์ ์ฉ ๋ฆฌ์คํธ
if not message["files"]:
return [{"type": "text", "text": message["text"]}], temp_files
video_files = [f for f in message["files"] if is_video_file(f)]
image_files = [f for f in message["files"] if is_image_file(f)]
csv_files = [f for f in message["files"] if f.lower().endswith(".csv")]
txt_files = [f for f in message["files"] if f.lower().endswith(".txt")]
pdf_files = [f for f in message["files"] if f.lower().endswith(".pdf")]
content_list = [{"type": "text", "text": message["text"]}]
for csv_path in csv_files:
csv_analysis = analyze_csv_file(csv_path)
content_list.append({"type": "text", "text": csv_analysis})
for txt_path in txt_files:
txt_analysis = analyze_txt_file(txt_path)
content_list.append({"type": "text", "text": txt_analysis})
for pdf_path in pdf_files:
pdf_markdown = pdf_to_markdown(pdf_path)
content_list.append({"type": "text", "text": pdf_markdown})
if video_files:
video_content, video_temp_files = process_video(video_files[0])
content_list += video_content
temp_files.extend(video_temp_files)
return content_list, temp_files
if "<image>" in message["text"] and image_files:
interleaved_content = process_interleaved_images({"text": message["text"], "files": image_files})
if content_list and content_list[0]["type"] == "text":
content_list = content_list[1:]
return interleaved_content + content_list, temp_files
else:
for img_path in image_files:
content_list.append({"type": "image", "url": img_path})
return content_list, temp_files
##############################################################################
# history -> LLM ๋ฉ์์ง ๋ณํ
##############################################################################
def process_history(history: list[dict]) -> list[dict]:
messages = []
current_user_content: list[dict] = []
for item in history:
if item["role"] == "assistant":
if current_user_content:
messages.append({"role": "user", "content": current_user_content})
current_user_content = []
messages.append({"role": "assistant", "content": [{"type": "text", "text": item["content"]}]})
else:
content = item["content"]
if isinstance(content, str):
current_user_content.append({"type": "text", "text": content})
elif isinstance(content, list) and len(content) > 0:
file_path = content[0]
if is_image_file(file_path):
current_user_content.append({"type": "image", "url": file_path})
else:
current_user_content.append({"type": "text", "text": f"[File: {os.path.basename(file_path)}]"})
if current_user_content:
messages.append({"role": "user", "content": current_user_content})
return messages
##############################################################################
# ๋ชจ๋ธ ์์ฑ ํจ์์์ OOM ์บ์น
##############################################################################
def _model_gen_with_oom_catch(**kwargs):
"""
๋ณ๋ ์ค๋ ๋์์ OutOfMemoryError๋ฅผ ์ก์์ฃผ๊ธฐ ์ํด
"""
try:
model.generate(**kwargs)
except torch.cuda.OutOfMemoryError:
raise RuntimeError(
"[OutOfMemoryError] GPU ๋ฉ๋ชจ๋ฆฌ๊ฐ ๋ถ์กฑํฉ๋๋ค. "
"Max New Tokens์ ์ค์ด๊ฑฐ๋, ํ๋กฌํํธ ๊ธธ์ด๋ฅผ ์ค์ฌ์ฃผ์ธ์."
)
finally:
# ์์ฑ ์๋ฃ ํ ํ๋ฒ ๋ ์บ์ ๋น์ฐ๊ธฐ
clear_cuda_cache()
##############################################################################
# ๋ฉ์ธ ์ถ๋ก ํจ์ (web search ์ฒดํฌ ์ ์๋ ํค์๋์ถ์ถ->๊ฒ์->๊ฒฐ๊ณผ system msg)
##############################################################################
@spaces.GPU(duration=120)
def run(
message: dict,
history: list[dict],
system_prompt: str = "",
max_new_tokens: int = 512,
use_web_search: bool = False,
web_search_query: str = "",
) -> Iterator[str]:
if not validate_media_constraints(message, history):
yield ""
return
temp_files = [] # ์์ ํ์ผ ์ถ์ ์ฉ
try:
combined_system_msg = ""
# ๋ด๋ถ์ ์ผ๋ก๋ง ์ฌ์ฉ (UI์์๋ ๋ณด์ด์ง ์์)
if system_prompt.strip():
combined_system_msg += f"[System Prompt]\n{system_prompt.strip()}\n\n"
if use_web_search:
user_text = message["text"]
ws_query = extract_keywords(user_text, top_k=5)
if ws_query.strip():
logger.info(f"[Auto WebSearch Keyword] {ws_query!r}")
ws_result = do_web_search(ws_query)
combined_system_msg += f"[Search top-20 Full Items Based on user prompt]\n{ws_result}\n\n"
# >>> ์ถ๊ฐ๋ ์๋ด ๋ฌธ๊ตฌ (๊ฒ์ ๊ฒฐ๊ณผ์ link ๋ฑ ์ถ์ฒ๋ฅผ ํ์ฉ)
combined_system_msg += "[์ฐธ๊ณ : ์ ๊ฒ์๊ฒฐ๊ณผ ๋ด์ฉ๊ณผ link๋ฅผ ์ถ์ฒ๋ก ์ธ์ฉํ์ฌ ๋ต๋ณํด ์ฃผ์ธ์.]\n\n"
combined_system_msg += """
[์ค์ ์ง์์ฌํญ]
1. ๋ต๋ณ์ ๊ฒ์ ๊ฒฐ๊ณผ์์ ์ฐพ์ ์ ๋ณด์ ์ถ์ฒ๋ฅผ ๋ฐ๋์ ์ธ์ฉํ์ธ์.
2. ์ถ์ฒ ์ธ์ฉ ์ "[์ถ์ฒ ์ ๋ชฉ](๋งํฌ)" ํ์์ ๋งํฌ๋ค์ด ๋งํฌ๋ฅผ ์ฌ์ฉํ์ธ์.
3. ์ฌ๋ฌ ์ถ์ฒ์ ์ ๋ณด๋ฅผ ์ข
ํฉํ์ฌ ๋ต๋ณํ์ธ์.
4. ๋ต๋ณ ๋ง์ง๋ง์ "์ฐธ๊ณ ์๋ฃ:" ์น์
์ ์ถ๊ฐํ๊ณ ์ฌ์ฉํ ์ฃผ์ ์ถ์ฒ ๋งํฌ๋ฅผ ๋์ดํ์ธ์.
"""
else:
combined_system_msg += "[No valid keywords found, skipping WebSearch]\n\n"
messages = []
if combined_system_msg.strip():
messages.append({
"role": "system",
"content": [{"type": "text", "text": combined_system_msg.strip()}],
})
messages.extend(process_history(history))
user_content, user_temp_files = process_new_user_message(message)
temp_files.extend(user_temp_files) # ์์ ํ์ผ ์ถ์
for item in user_content:
if item["type"] == "text" and len(item["text"]) > MAX_CONTENT_CHARS:
item["text"] = item["text"][:MAX_CONTENT_CHARS] + "\n...(truncated)..."
messages.append({"role": "user", "content": user_content})
inputs = processor.apply_chat_template(
messages,
add_generation_prompt=True,
tokenize=True,
return_dict=True,
return_tensors="pt",
).to(device=model.device, dtype=torch.bfloat16)
# ์
๋ ฅ ํ ํฐ ์ ์ ํ ์ถ๊ฐ
if inputs.input_ids.shape[1] > MAX_INPUT_LENGTH:
inputs.input_ids = inputs.input_ids[:, -MAX_INPUT_LENGTH:]
if 'attention_mask' in inputs:
inputs.attention_mask = inputs.attention_mask[:, -MAX_INPUT_LENGTH:]
streamer = TextIteratorStreamer(processor, timeout=30.0, skip_prompt=True, skip_special_tokens=True)
gen_kwargs = dict(
inputs,
streamer=streamer,
max_new_tokens=max_new_tokens,
)
t = Thread(target=_model_gen_with_oom_catch, kwargs=gen_kwargs)
t.start()
output = ""
for new_text in streamer:
output += new_text
yield output
except Exception as e:
logger.error(f"Error in run: {str(e)}")
yield f"์ฃ์กํฉ๋๋ค. ์ค๋ฅ๊ฐ ๋ฐ์ํ์ต๋๋ค: {str(e)}"
finally:
# ์์ ํ์ผ ์ญ์
for temp_file in temp_files:
try:
if os.path.exists(temp_file):
os.unlink(temp_file)
logger.info(f"Deleted temp file: {temp_file}")
except Exception as e:
logger.warning(f"Failed to delete temp file {temp_file}: {e}")
# ๋ช
์์ ๋ฉ๋ชจ๋ฆฌ ์ ๋ฆฌ
try:
del inputs, streamer
except:
pass
clear_cuda_cache()
##############################################################################
# ์์๋ค (๋ชจ๋ ์์ด๋ก)
##############################################################################
examples = [
[
{
"text": "Compare the contents of the two PDF files.",
"files": [
"assets/additional-examples/before.pdf",
"assets/additional-examples/after.pdf",
],
}
],
[
{
"text": "Summarize and analyze the contents of the CSV file.",
"files": ["assets/additional-examples/sample-csv.csv"],
}
],
[
{
"text": "Assume the role of a friendly and understanding girlfriend. Describe this video.",
"files": ["assets/additional-examples/tmp.mp4"],
}
],
[
{
"text": "Describe the cover and read the text on it.",
"files": ["assets/additional-examples/maz.jpg"],
}
],
[
{
"text": "I already have this supplement <image> and I plan to buy this product <image>. Are there any precautions when taking them together?",
"files": ["assets/additional-examples/pill1.png", "assets/additional-examples/pill2.png"],
}
],
[
{
"text": "Solve this integral.",
"files": ["assets/additional-examples/4.png"],
}
],
[
{
"text": "When was this ticket issued, and what is its price?",
"files": ["assets/additional-examples/2.png"],
}
],
[
{
"text": "Based on the sequence of these images, create a short story.",
"files": [
"assets/sample-images/09-1.png",
"assets/sample-images/09-2.png",
"assets/sample-images/09-3.png",
"assets/sample-images/09-4.png",
"assets/sample-images/09-5.png",
],
}
],
[
{
"text": "Write Python code using matplotlib to plot a bar chart that matches this image.",
"files": ["assets/additional-examples/barchart.png"],
}
],
[
{
"text": "Read the text in the image and write it out in Markdown format.",
"files": ["assets/additional-examples/3.png"],
}
],
[
{
"text": "What does this sign say?",
"files": ["assets/sample-images/02.png"],
}
],
[
{
"text": "Compare the two images and describe their similarities and differences.",
"files": ["assets/sample-images/03.png"],
}
],
]
##############################################################################
# Gradio UI (Blocks) ๊ตฌ์ฑ (์ข์ธก ์ฌ์ด๋ ๋ฉ๋ด ์์ด ์ ์ฒดํ๋ฉด ์ฑํ
)
##############################################################################
css = """
/* 1) UI๋ฅผ ์ฒ์๋ถํฐ ๊ฐ์ฅ ๋๊ฒ (width 100%) ๊ณ ์ ํ์ฌ ํ์ */
.gradio-container {
background: rgba(255, 255, 255, 0.7); /* ๋ฐฐ๊ฒฝ ํฌ๋ช
๋ ์ฆ๊ฐ */
padding: 30px 40px;
margin: 20px auto; /* ์์๋ ์ฌ๋ฐฑ๋ง ์ ์ง */
width: 100% !important;
max-width: none !important; /* 1200px ์ ํ ์ ๊ฑฐ */
}
.fillable {
width: 100% !important;
max-width: 100% !important;
}
/* 2) ๋ฐฐ๊ฒฝ์ ์์ ํ ํฌ๋ช
ํ๊ฒ ๋ณ๊ฒฝ */
body {
background: transparent; /* ์์ ํฌ๋ช
๋ฐฐ๊ฒฝ */
margin: 0;
padding: 0;
font-family: 'Helvetica Neue', Helvetica, Arial, sans-serif;
color: #333;
}
/* ๋ฒํผ ์์ ์์ ํ ์ ๊ฑฐํ๊ณ ํฌ๋ช
ํ๊ฒ */
button, .btn {
background: transparent !important; /* ์์ ์์ ํ ์ ๊ฑฐ */
border: 1px solid #ddd; /* ๊ฒฝ๊ณ์ ๋ง ์ด์ง ์ถ๊ฐ */
color: #333;
padding: 12px 24px;
text-transform: uppercase;
font-weight: bold;
letter-spacing: 1px;
cursor: pointer;
}
button:hover, .btn:hover {
background: rgba(0, 0, 0, 0.05) !important; /* ํธ๋ฒ ์ ์์ฃผ ์ด์ง ์ด๋ก๊ฒ๋ง */
}
/* examples ๊ด๋ จ ๋ชจ๋ ์์ ์ ๊ฑฐ */
#examples_container, .examples-container {
margin: auto;
width: 90%;
background: transparent !important;
}
#examples_row, .examples-row {
justify-content: center;
background: transparent !important;
}
/* examples ๋ฒํผ ๋ด๋ถ์ ๋ชจ๋ ์์ ์ ๊ฑฐ */
.gr-samples-table button,
.gr-samples-table .gr-button,
.gr-samples-table .gr-sample-btn,
.gr-examples button,
.gr-examples .gr-button,
.gr-examples .gr-sample-btn,
.examples button,
.examples .gr-button,
.examples .gr-sample-btn {
background: transparent !important;
border: 1px solid #ddd;
color: #333;
}
/* examples ๋ฒํผ ํธ๋ฒ ์์๋ ์์ ์๊ฒ */
.gr-samples-table button:hover,
.gr-samples-table .gr-button:hover,
.gr-samples-table .gr-sample-btn:hover,
.gr-examples button:hover,
.gr-examples .gr-button:hover,
.gr-examples .gr-sample-btn:hover,
.examples button:hover,
.examples .gr-button:hover,
.examples .gr-sample-btn:hover {
background: rgba(0, 0, 0, 0.05) !important;
}
/* ์ฑํ
์ธํฐํ์ด์ค ์์๋ค๋ ํฌ๋ช
ํ๊ฒ */
.chatbox, .chatbot, .message {
background: transparent !important;
}
/* ์
๋ ฅ์ฐฝ ํฌ๋ช
๋ ์กฐ์ */
.multimodal-textbox, textarea, input {
background: rgba(255, 255, 255, 0.5) !important;
}
/* ๋ชจ๋ ์ปจํ
์ด๋ ์์์ ๋ฐฐ๊ฒฝ์ ์ ๊ฑฐ */
.container, .wrap, .box, .panel, .gr-panel {
background: transparent !important;
}
/* ์์ ์น์
์ ๋ชจ๋ ์์์์ ๋ฐฐ๊ฒฝ์ ์ ๊ฑฐ */
.gr-examples-container, .gr-examples, .gr-sample, .gr-sample-row, .gr-sample-cell {
background: transparent !important;
}
"""
title_html = """
<h1 align="center" style="margin-bottom: 0.2em; font-size: 1.6em;"> ๐ค Gemma3-R1984-4B </h1>
<p align="center" style="font-size:1.1em; color:#555;">
โ
Agentic AI Platform โ
Reasoning & Uncensored โ
Multimodal & VLM โ
Deep-Research & RAG <br>
Operates on an โ
'NVIDIA L40s / A100(ZeroGPU) GPU' as an independent local server, enhancing security and preventing information leakage.<br>
@Model Rpository: VIDraft/Gemma-3-R1984-4B, @Based by 'Google Gemma-3-4b', @Powered by 'MOUSE-II'(VIDRAFT)
</p>
"""
with gr.Blocks(css=css, title="Gemma3-R1984-4B") as demo:
gr.Markdown(title_html)
# Display the web search option (while the system prompt and token slider remain hidden)
web_search_checkbox = gr.Checkbox(
label="Deep Research",
value=False
)
# Used internally but not visible to the user
system_prompt_box = gr.Textbox(
lines=3,
value="You are a deep thinking AI that may use extremely long chains of thought to thoroughly analyze the problem and deliberate using systematic reasoning processes to arrive at a correct solution before answering.",
visible=False # hidden from view
)
max_tokens_slider = gr.Slider(
label="Max New Tokens",
minimum=100,
maximum=8000,
step=50,
value=1000,
visible=False # hidden from view
)
web_search_text = gr.Textbox(
lines=1,
label="(Unused) Web Search Query",
placeholder="No direct input needed",
visible=False # hidden from view
)
# Configure the chat interface
chat = gr.ChatInterface(
fn=run,
type="messages",
chatbot=gr.Chatbot(type="messages", scale=1, allow_tags=["image"]),
textbox=gr.MultimodalTextbox(
file_types=[
".webp", ".png", ".jpg", ".jpeg", ".gif",
".mp4", ".csv", ".txt", ".pdf"
],
file_count="multiple",
autofocus=True
),
multimodal=True,
additional_inputs=[
system_prompt_box,
max_tokens_slider,
web_search_checkbox,
web_search_text,
],
stop_btn=False,
title='<a href="https://discord.gg/openfreeai" target="_blank">https://discord.gg/openfreeai</a>',
examples=examples,
run_examples_on_click=False,
cache_examples=False,
css_paths=None,
delete_cache=(1800, 1800),
)
# Example section - since examples are already set in ChatInterface, this is for display only
with gr.Row(elem_id="examples_row"):
with gr.Column(scale=12, elem_id="examples_container"):
gr.Markdown("### Example Inputs (click to load)")
if __name__ == "__main__":
# Run locally
demo.launch()
|