Spaces:
Running
on
Zero
Running
on
Zero
import inspect | |
import math | |
from typing import Any, Callable, Dict, List, Optional, Tuple, Union | |
import numpy as np | |
import PIL | |
import PIL.Image | |
import torch | |
from diffusers.image_processor import PipelineImageInput | |
from diffusers.pipelines.pipeline_utils import DiffusionPipeline | |
from diffusers.schedulers import FlowMatchEulerDiscreteScheduler # not sure | |
from diffusers.schedulers.scheduling_ddpm import DDPMScheduler | |
from diffusers.utils import logging | |
from diffusers.utils.torch_utils import randn_tensor | |
from transformers import ( | |
BitImageProcessor, | |
CLIPImageProcessor, | |
CLIPVisionModelWithProjection, | |
Dinov2Model, | |
) | |
from ..models.autoencoders import TripoSGVAEModel | |
from ..models.transformers import DetailGen3DDiTModel | |
from .pipeline_detailgen3d_output import DetailGen3DPipelineOutput | |
from .pipeline_utils import TransformerDiffusionMixin | |
logger = logging.get_logger(__name__) # pylint: disable=invalid-name | |
# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.retrieve_timesteps | |
def retrieve_timesteps( | |
scheduler, | |
num_inference_steps: Optional[int] = None, | |
device: Optional[Union[str, torch.device]] = None, | |
timesteps: Optional[List[int]] = None, | |
sigmas: Optional[List[float]] = None, | |
**kwargs, | |
): | |
""" | |
Calls the scheduler's `set_timesteps` method and retrieves timesteps from the scheduler after the call. Handles | |
custom timesteps. Any kwargs will be supplied to `scheduler.set_timesteps`. | |
Args: | |
scheduler (`SchedulerMixin`): | |
The scheduler to get timesteps from. | |
num_inference_steps (`int`): | |
The number of diffusion steps used when generating samples with a pre-trained model. If used, `timesteps` | |
must be `None`. | |
device (`str` or `torch.device`, *optional*): | |
The device to which the timesteps should be moved to. If `None`, the timesteps are not moved. | |
timesteps (`List[int]`, *optional*): | |
Custom timesteps used to override the timestep spacing strategy of the scheduler. If `timesteps` is passed, | |
`num_inference_steps` and `sigmas` must be `None`. | |
sigmas (`List[float]`, *optional*): | |
Custom sigmas used to override the timestep spacing strategy of the scheduler. If `sigmas` is passed, | |
`num_inference_steps` and `timesteps` must be `None`. | |
Returns: | |
`Tuple[torch.Tensor, int]`: A tuple where the first element is the timestep schedule from the scheduler and the | |
second element is the number of inference steps. | |
""" | |
if timesteps is not None and sigmas is not None: | |
raise ValueError( | |
"Only one of `timesteps` or `sigmas` can be passed. Please choose one to set custom values" | |
) | |
if timesteps is not None: | |
accepts_timesteps = "timesteps" in set( | |
inspect.signature(scheduler.set_timesteps).parameters.keys() | |
) | |
if not accepts_timesteps: | |
raise ValueError( | |
f"The current scheduler class {scheduler.__class__}'s `set_timesteps` does not support custom" | |
f" timestep schedules. Please check whether you are using the correct scheduler." | |
) | |
scheduler.set_timesteps(timesteps=timesteps, device=device, **kwargs) | |
timesteps = scheduler.timesteps | |
num_inference_steps = len(timesteps) | |
elif sigmas is not None: | |
accept_sigmas = "sigmas" in set( | |
inspect.signature(scheduler.set_timesteps).parameters.keys() | |
) | |
if not accept_sigmas: | |
raise ValueError( | |
f"The current scheduler class {scheduler.__class__}'s `set_timesteps` does not support custom" | |
f" sigmas schedules. Please check whether you are using the correct scheduler." | |
) | |
scheduler.set_timesteps(sigmas=sigmas, device=device, **kwargs) | |
timesteps = scheduler.timesteps | |
num_inference_steps = len(timesteps) | |
else: | |
scheduler.set_timesteps(num_inference_steps, device=device, **kwargs) | |
timesteps = scheduler.timesteps | |
return timesteps, num_inference_steps | |
class DetailGen3DPipeline( | |
DiffusionPipeline, TransformerDiffusionMixin | |
): | |
""" | |
Pipeline for detail generation using DetailGen3D. | |
""" | |
def __init__( | |
self, | |
vae: TripoSGVAEModel, | |
transformer: DetailGen3DDiTModel, | |
scheduler: FlowMatchEulerDiscreteScheduler, | |
noise_scheduler: DDPMScheduler, | |
image_encoder_1: Dinov2Model, | |
feature_extractor_1: BitImageProcessor, | |
): | |
super().__init__() | |
self.register_modules( | |
vae=vae, | |
transformer=transformer, | |
scheduler=scheduler, | |
noise_scheduler=noise_scheduler, | |
image_encoder_1=image_encoder_1, | |
feature_extractor_1=feature_extractor_1, | |
) | |
def guidance_scale(self): | |
return self._guidance_scale | |
def do_classifier_free_guidance(self): | |
return self._guidance_scale > 1 | |
def num_timesteps(self): | |
return self._num_timesteps | |
def attention_kwargs(self): | |
return self._attention_kwargs | |
def interrupt(self): | |
return self._interrupt | |
def encode_image_1(self, image, device, num_images_per_prompt): | |
dtype = next(self.image_encoder_1.parameters()).dtype | |
if not isinstance(image, torch.Tensor): | |
image = self.feature_extractor_1(image, return_tensors="pt").pixel_values | |
image = image.to(device=device, dtype=dtype) | |
image_embeds = self.image_encoder_1(image).last_hidden_state | |
image_embeds = image_embeds.repeat_interleave(num_images_per_prompt, dim=0) | |
uncond_image_embeds = torch.zeros_like(image_embeds) | |
return image_embeds, uncond_image_embeds | |
def prepare_latents( | |
self, | |
batch_size, | |
num_tokens, | |
num_channels_latents, | |
dtype, | |
device, | |
generator, | |
latents: Optional[torch.Tensor] = None, | |
noise_aug_level = 0, | |
): | |
if latents is not None: | |
latents = latents.to(device=device, dtype=dtype) | |
latents = self.noise_scheduler.add_noise(latents, torch.randn_like(latents), torch.tensor(noise_aug_level)) | |
return latents | |
raise Exception( | |
f"You have to pass latents of geometry you want to refine." | |
) | |
def __call__( | |
self, | |
image: PipelineImageInput, | |
image_2: Optional[PipelineImageInput] = None, | |
num_inference_steps: int = 10, | |
timesteps: List[int] = None, | |
guidance_scale: float = 4.0, | |
num_images_per_prompt: int = 1, | |
sampled_points: Optional[torch.Tensor] = None, | |
generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None, | |
latents: Optional[torch.FloatTensor] = None, | |
attention_kwargs: Optional[Dict[str, Any]] = None, | |
callback_on_step_end: Optional[Callable[[int, int, Dict], None]] = None, | |
callback_on_step_end_tensor_inputs: List[str] = ["latents"], | |
output_type: Optional[str] = "mesh_vf", | |
return_dict: bool = True, | |
noise_aug_level = 0, | |
): | |
# 1. Check inputs. Raise error if not correct | |
# TODO | |
self._guidance_scale = guidance_scale | |
self._attention_kwargs = attention_kwargs | |
self._interrupt = False | |
# 2. Define call parameters | |
if isinstance(image, PIL.Image.Image): | |
batch_size = 1 | |
elif isinstance(image, list): | |
batch_size = len(image) | |
elif isinstance(image, torch.Tensor): | |
batch_size = image.shape[0] | |
else: | |
raise ValueError("Invalid input type for image") | |
device = self._execution_device | |
# 3. Encode condition | |
image_embeds_1, negative_image_embeds_1 = self.encode_image_1( | |
image, device, num_images_per_prompt | |
) | |
if self.do_classifier_free_guidance: | |
image_embeds_1 = torch.cat([negative_image_embeds_1, image_embeds_1], dim=0) | |
# 4. Prepare timesteps | |
timesteps, num_inference_steps = retrieve_timesteps( | |
self.scheduler, num_inference_steps, device, timesteps | |
) | |
num_warmup_steps = max( | |
len(timesteps) - num_inference_steps * self.scheduler.order, 0 | |
) | |
self._num_timesteps = len(timesteps) | |
# 5. Prepare latent variables | |
num_tokens = self.transformer.config.width | |
num_channels_latents = self.transformer.config.in_channels | |
latents = self.prepare_latents( | |
batch_size * num_images_per_prompt, | |
num_tokens, | |
num_channels_latents, | |
image_embeds_1.dtype, | |
device, | |
generator, | |
latents, | |
noise_aug_level, | |
) | |
# 6. Denoising loop | |
with self.progress_bar(total=num_inference_steps) as progress_bar: | |
for i, t in enumerate(timesteps): | |
if self.interrupt: | |
continue | |
# expand the latents if we are doing classifier free guidance | |
latent_model_input = ( | |
torch.cat([latents] * 2) | |
if self.do_classifier_free_guidance | |
else latents | |
) | |
# broadcast to batch dimension in a way that's compatible with ONNX/Core ML | |
timestep = t.expand(latent_model_input.shape[0]) | |
noise_pred = self.transformer( | |
latent_model_input, | |
timestep, | |
encoder_hidden_states=image_embeds_1, | |
attention_kwargs=attention_kwargs, | |
return_dict=False, | |
)[0] | |
# perform guidance | |
if self.do_classifier_free_guidance: | |
noise_pred_uncond, noise_pred_image = noise_pred.chunk(2) | |
noise_pred = noise_pred_uncond + self.guidance_scale * ( | |
noise_pred_image - noise_pred_uncond | |
) | |
# compute the previous noisy sample x_t -> x_t-1 | |
latents_dtype = latents.dtype | |
latents = self.scheduler.step( | |
noise_pred, t, latents, return_dict=False | |
)[0] | |
if latents.dtype != latents_dtype: | |
if torch.backends.mps.is_available(): | |
# some platforms (eg. apple mps) misbehave due to a pytorch bug: https://github.com/pytorch/pytorch/pull/99272 | |
latents = latents.to(latents_dtype) | |
if callback_on_step_end is not None: | |
callback_kwargs = {} | |
for k in callback_on_step_end_tensor_inputs: | |
callback_kwargs[k] = locals()[k] | |
callback_outputs = callback_on_step_end(self, i, t, callback_kwargs) | |
latents = callback_outputs.pop("latents", latents) | |
image_embeds_1 = callback_outputs.pop( | |
"image_embeds_1", image_embeds_1 | |
) | |
negative_image_embeds_1 = callback_outputs.pop( | |
"negative_image_embeds_1", negative_image_embeds_1 | |
) | |
# call the callback, if provided | |
if i == len(timesteps) - 1 or ( | |
(i + 1) > num_warmup_steps and (i + 1) % self.scheduler.order == 0 | |
): | |
progress_bar.update() | |
if output_type == "latent": | |
output = latents | |
else: | |
if sampled_points is None: | |
raise ValueError( | |
"sampled_points must be provided when output_type is not 'latent'" | |
) | |
output = self.vae.decode(latents, sampled_points=sampled_points).sample | |
# Offload all models | |
self.maybe_free_model_hooks() | |
if not return_dict: | |
return (output,) | |
return DetailGen3DPipelineOutput(samples=output) | |